ISSN (e): 2580-2615, ISSN (p): 1412-8810

Reliability Index Assessment-Section Technique pada Distribusi Listrik Penyulang Suci Menggunakan Software ETAP

Fauzia Haz¹, Arya Mustopa¹, Giri Angga Setia¹, Dede Furqon¹, Atik Charisma¹, dan M. Reza Hidayat¹

¹Jurusan Teknik Elektro, Fakultas Teknik, Universitas Jenderal Achmad Yani, Cimahi, Indonesia fauzia.haz@lecture.unjani.ac.id, aryamustopa04@gmail.com, giri.angga.setia@lecture.unjani.ac.id, dede.furqon@lecture.unjani.ac.id, atik.charisma@lecture.unjani.ac.id, mreza@lecture.unjani.ac.id

Abstrak

Masalah yang sering terjadi pada jaringan distribusi listrik adalah kualitas, kontinuitas dan ketersediaan layanan kepada konsumen. Penelitian ini bertujuan untuk mengevaluasi keandalan sistem distribusi listrik tegangan menengah 20 kV pada penyulang Suci ULP Garut Kota, dimana pada tahun 2021 penyulang Suci mengalami 14 kali gangguan dengan durasi 791 menit (13,1 Jam), diantaranya ada saluran udara tegangan menengah putus 2 *Phase* dan adanya ledakan akibat terkena layangan. Dalam menentukan nilai indeks keandalan sistem pendistribusian listrik penyulang Suci ULP Garut Kota ini dilakukan perhitungan secara matematis menggunakan metode RIA-*section technique* dengan rumus yang telah ditentukan serta disimulasikan menggunakan *software* ETAP dengan *study case reliability assessment*. Berdasarkan hasil penelitian ini dilakukan suatu perbaikan agar nilai keandalan penyulang stabil. Perbaikan dilakukan 2 kali, untuk perbaikan yang pertama dipasang 2 buah *Fuse cut out* dan memindahkan 4 buah transformator, sedangkan perbaikan kedua ialah membagi penyulang Suci menjadi 2 bagian, yaitu penyulang Suci barat dan penyulang Suci timur. Maka dengan melakukan perbaikan tersebut indeks keandalan pada penyulang Suci menjadi stabil dan memenuhi apa yang telah ditetapkan oleh SPLN 68-2: 1986 yaitu dibawah SAIFI 3,3 kali/pelanggan/tahun dan SAIDI 21,9 jam/pelanggan/tahun.

Kata kunci: Distribusi Listrik, ETAP, Indeks Keandalan, RIA-section technique

Abstract

Problems that often occur with electricity distribution network quality, continuity and availability services consumers. Study aims evaluate reliability of the 20 kV medium-voltage electricity distribution system at the Suci ULP Garut Kota feeder, where 2021 Suci feeder experienced 14 disturbances duration 791 minutes (13.1 hours), including a medium-voltage overhead line that broke 2 Phase. Determining the reliability index value electricity distribution system of the Kudus ULP Garut City feeder, mathematical calculations were carried out using RIA-section technique predetermined formula and simulated using ETAP software with study case reliability assessment. Based on the results of the study, improvement was made that the reliability value feeder was stable. Repairs were carried out 2 times, first repair, 2 fuse cutouts were installed and 4 transformers were moved, while the second repair was to divide the Suci feeder into 2 parts, namely the western Suci feeder and the eastern Suci feeder. So making these improvements the reliability index Suci feeder becomes stable and meets what has been SPLN 68-2: 1986, which is below SAIFI 3.3 times/customer/year and SAIDI 21.9 hours/customer/year.

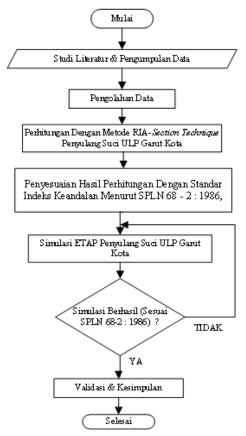
Keywords: Electrical Distribution, ETAP, Reliability Index, RIA-section technique

1. Pendahuluan

Pelayanan listrik yang sesuai harapan pelanggan sangat bergantung pada kualitas dan keandalan distribusi tenaga listrik. Keandalan yang dimaksud bisa diartikan sebagai tidak adanya gangguan *system* (Hidayatullah, 2017) dan berlangsung secara kontinu. Gangguan banyak terjadi akibat sistem yang tidak andal, maka diperlukan suatu perbaikan untuk menanggulangi gangguan menjadi sistem distribusi yang dikatakan Keandalan distribusi memainkan peran penting dalam keamanan dan kenyamanan masyarakat, lembaga pendidikan, lembaga pemerintah dan bisnis. Indeks keandalan sistem distribusi adalah metode untuk mengevaluasi parameter nilai keandalan peralatan distribusi (Hidayatullah, 2017). Berdasarkan penelitian-penelitian yang telah dilakukan, (Fatoni dkk., 2016) menggunakan metode FMEA, yang mana setiap komponen dan peralatan dihitung dengan detail berapa keandalan pada komponen tersebut, akan tetapi pada penelitian ini tidak disimulasikan menggunakan *software* pendukung untuk memvalidasi penelitian tersebut (Putri Hesti & Nugraha, 2023)

Analisis suatu keandalan sistem distribusi membutuhkan cakupan yang luas

Info Makalah:
Dikirim : 06-22-23;
Revisi 1 : 11-10-23;
Revisi 2 : 12-12-23;
Diterima : 02-28-24.


Penulis Korespondensi:
Telp : +62-852-5590-8299
e-mail : fauzia.haz@unjani.ac.id

sehingga dibutuhkan metode yaitu section technique. Penyulang Suci ULP Garut Kota merupakan salah satu daerah yang memiliki sistem keandalan pendistribusian listrik yang kurang baik. Pada penyulang Suci telah terjadi 14 kali gangguan atau kegagalan dengan durasi 791 menit (13,1 Jam) pada tahun 2021, diantaranya ada SUTM putus 2 Phase dan adanya ledakan akibat SUTM terkena layangan. Oleh karena itu, perlu untuk mempertimbangkan tingkat

keandalan sistem distribusi 20 kV dengan metode RIA (*Reliability Indeks Assessment*) – section technique (Luthfiyani dkk., 2023). Dalam menentukan nilai keandalan sistem pendistribusian ini dilakukan perhitungan secara matematis menggunakan metode RIA-section technique (Maliky & Haryudo, 2020) dengan rumus yang telah ditentukan serta disimulasikan menggunakan software ETAP dengan study case Reliability Assessment (RA), kemudian tingkat keandalan sistem pendistribusian listrik penyulang Suci akan disesuaikan dengan standar SPLN 68-2: 1986. Selain itu untuk mengetahui tingkat keandalan maka perlu diketahui indeks-indek keandalan yaitu SAIDI dan SAIFI(Sanaky dkk., t.t.).

2. Metode

Data diolah dan dihitung menggunakan metode RIA-section technique, hasil dari perhitungan matematis kemudian disesuaikan dengan SPLN 68-2: 1986. Hasil penyesuaian disimulasikan menggunakan software ETAP dengan melakukan 2 simulasi yaitu simulasi sebelum perbaikan dan sesudah perbaikan. Hasil dari setelah perbaikan dapat dijadikan rekomendasi kepada pihak PLN untuk menstabilkan nilai indeks keandalan penyulang Suci ULP Garut Kota

Gambar 1. Diagram Alir Penelitian.

Hasil pengumpulan data lapangan meliputi gambar 1 *Single Line Diagram* penyulang Suci ULP Garut kota, jumlah pelanggan penyulang Suci tahun 2021, data komponen pada penyulang Suci ULP Garut Kota, data gangguan selama satu tahun (2021) Penyulang Suci ULP Garut Kota, data trafo dan beban penyulang Suci ULP Garut Kota tahun 2021. Data diolah dan dihitung menggunakan metode RIA-*section technique* (Kusuma dkk., 2022), hasil dari perhitungan matematis kemudian disesuaikan dengan SPLN 68-2: 1986 (Prayogi, 2021). Hasil matematis disimulasikan menggunakan *software* ETAP dengan melakukan 2 simulasi yaitu simulasi sebelum perbaikan dan sesudah perbaikan. Hasil dari setelah perbaikan dapat dijadikan rekomendasi kepada pihak PLN.

2.1. Metode RIA (Reliability Index Assessment)-Section Technique

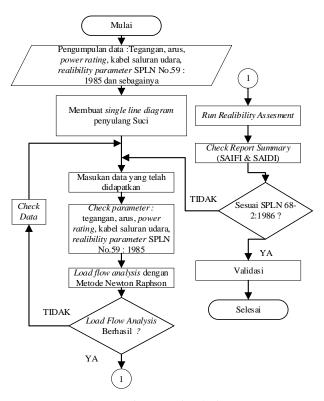
Metode RIA (Reliability Index Assessment)-Section Technique ialah suatu metode gabungan dari 2 metode yaitu metode RIA dan metode section technique. Metode RIA adalah metode pendekatan yang digunakan untuk memprediksi kegagalan jaringan distribusi daya sesuai dengan topologi sistem dan data keandalan komponen RIA secara komprehensif mencatat kesalahan yang terjadi pada komponen, mengidentifikasi kesalahan, dan menganalisis mode kegagalan. Sedangkan metode section technique merupakan metode membagi sistem menjadi beberapa bagian yang lebih kecil untuk mengevaluasi keandalan sistem, tetapi juga meminimalkan terjadinya kesalahan dan mengurangi waktu yang diperlukan (Budi dkk., 2015).

SAIFI (*System Average Interruption Frequency Index*) dapat didefinisikan sebagai jumlah rata-rata pemadaman yang dialami oleh konsumen yang mengoperasikan sistem selama periode waktu tertentu (biasanya satu tahun). Indeks SAIFI dipengaruhi oleh pembagian jumlah pemadaman untuk semua konsumen dalam waktu satu tahun dengan jumlah semua pelanggan yang dipasok. Rumus Persamaan SAIDI dapat dilihat sebagai berikut:

$$SAIFI = \frac{\Sigma (\lambda i.Ni)}{\Sigma N}$$
 (1)

SAIDI (*System Average Interruption Duration Index*) dapat didefinisikan sebagai durasi rata-rata pemadaman yang dialami pelanggan sepanjang tahun. Indeks ini diperoleh dengan membagi jumlah gangguan yang sedang berlangsung untuk semua konsumen dalam periode waktu tertentu dengan jumlah pelanggan yang melayani tahun tersebut . Rumus Persamaan SAIDI dapat dilihat sebagai berikut :

$$SAIDI = \frac{\Sigma (Ui.Ni)}{\Sigma N}$$
 (2)

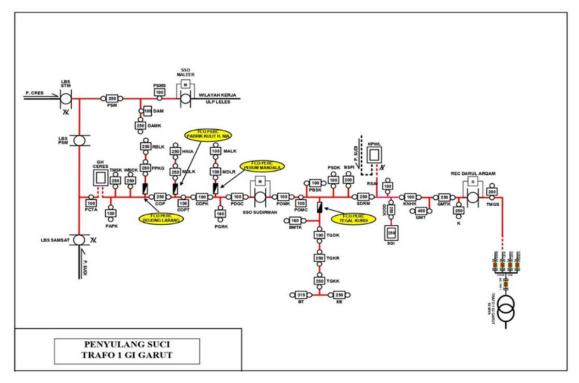

Analisis indeks keandalan pada sistem pendistribusian listrik dengan metode RIA-section technique tentunya sangat mempermudah untuk menentukan indeks keandalan pada suatu sistem pendistribusian listrik, untuk mencari frekuensi kegagalan pada sebuah peralatan, maka digunakan rumus:

$$\lambda i = (\lambda_L + \text{Momentary}) \times \text{Panjang Saluran}$$
 (3)

Sedangkan untuk mencari durasi kegagalan menggunakan rumus :

$$U = \lambda i$$
 repair time (4)

Simulasi software ETAP terdapat beberapa tahapan, dari mulai memasukkan data yang diperlukan, membuat single line diagram, sampai validasi pemodelan selesai. Berikut tahapan pemodelan simulasi menggunakan software ETAP (Faruq et al., 2021). Pengumpulan data lapangan yang dibutuhkan pada saat pemodelan menggunakan software ETAP adalah tegangan, power rating pada transformator, beban yang dimiliki oleh transformator, kabel pada jaringan (tipe kabel, panjang kabel, dan rating kabel) serta reliability menurut SPLN no. 59: 1985. Data yang telah diperoleh kemudian dimasukkan ke dalam setiap komponen yang dibutuhkan, dari mulai transformator, beban, kabel, dan lainlain. Periksa parameter untuk meminimalisir terjadinya kesalahan saat melakukan simulasi. Ada beberapa yang harus diperiksa parameternya dan harus sesuai dengan data yang telah didapatkan, yaitu transformator, kabel pada jaringan (tipe kabel, panjang kabel, dan rating kabel) serta reliability menurut SPLN no.59: 1985, dan lain-lain. Load flow analysis ialah langkah awal untuk melakukan simulasi keandalan pada sistem, dengan menjalankan load flow analysis akan mengetahui apakah rangkaian sudah berhasil dijalankan (disimulasikan), yang mana pada simulasi aliran daya ini menggunakan metode Newton Raphson (Laboratory, t.t.). Apabila tidak dapat disimulasikan load flow analysis, maka telah terjadi kesalahan pada saat membuat single line diagram atau terjadi kesalahan. Menjalankan study case reliability assessment merupakan bagian inti dari simulasi penelitian ini, dan dilihat dari hasil report summary untuk mengetahui indeks keandalan SAIFI & SAIDI. Menyesuaikan hasil report summary dengan indeks keandalan menurut SPLN 68-2:1986, apakah perlu perbaikan untuk penyulang Suci ULP Garut Kota. Apabila perbaikan telah selesai, dilakukan validasi bahwa penyulang suci sudah sesuai indeks keandalan nya dengan standar yang telah ditetapkan.



Gambar 2. Diagram Simulasi ETAP.

3. Hasil dan Pembahasan

3.1. Penyulang Suci ULP Garut Kota

Penyulang Suci merupakan bagian dari ULP Garut Kota yang mana merupakan salah satu penyulang di kota Garut yang terletak dekat dengan pusat kota yang terdiri dari berbagai kantor pemerintahan daerah, pusat perbelanjaan, pusat kesehatan seperti klinik, dan rumah sakit serta pusat pendidikan seperti adanya universitas, dan lain-lain. Berikut single line diagram penyulang Suci ULP Garut kota

Gambar 3. Single Line Diagram Penyulang Suci.

Single line diagram penyulang Suci ULP Garut Kota memiliki panjang penyulang 63,07 kms, pada penyulang Suci trafo 1 GI Garut terdapat 41 transformator dan gardu distribusi serta masing-masing FCO (Fuse Cut Out) yang menempel di atas transformator distribusi, termasuk gardu portal, gardu cantol dan gardu tembok. Kemudian terdapat 44 line 4 buah FCO percabangan, 1 buah recloser, dan 1 buah SSO serta 1 buah LBS. Pelanggan pada penyulang Suci memiliki 12.789 pelanggan dengan 41 gardu distribusi yang mana akan dibagi lagi dengan 2 bagian. Setiap bagian akan dibatasi oleh recloser dan sectionalizer atau sering disebut SSO serta LBS (Load Break Switch) yang mana ini adalah salah satu langkah awal menggunakan metode RIA-Section Technique. Dapat dilihat Gambar 3 section 1 merupakan bagian wilayah diantara recloser Darul Arqom dengan SSO Sudirman, untuk section 2 merupakan wilayah bagian diantara SSO Sudirman dengan SSO Maleer sekaligus pembatas wilayah kerja ULP Garut Kota dengan ULP Leles.

Wilayah gardu distribusi *section* 1 dengan jumlah pelanggan 6.151 dari 20 gardu distribusi. Wilayah *section* 1 ini, dapat dilihat pada Gambar 3 untuk *section* 1 merupakan wilayah antara *recloser* Darul Arqom dengan SSO Sudirman dan juga 1 buah FCO yaitu percabangan Tegal Kurdi. Pada *section* 2 ini terdapat 21 gardu distribusi dengan jumlah pelanggan 6.638. Pada Gambar 4 untuk *section* 2 ini terdapat 3 buah 3 buah FCO percabangan dengan yang mana wilayah *section* 2 ini diantara SSO Sudirman dengan SSO Maleer, yang mana SSO MALEER ini merupakan pembatas antara wilayah kerja ULP Garut Kota dengan ULP Leles.

3.2. Indeks Keandalan Komponen

Indeks kegagalan pada peralatan pendistribusian tenaga listrik yang ditetapkan SPLN N0.59 : 1985 meliputi data kegagalan pada saluran udara dan kegagalan pada peralatan distribusi. Berikut tabel indeks kegagalan pada peralatan yang ditetapkan oleh SPLN No.59 : 1985.

Variabel	Nilai		
Sustained failure rate (λ/km/yr)	0,2		
r (repair time) (Hours)	10		
rs (switching time) (hours)	0.16		

Tabel 1. Indeks Keandalan Saluran Udara.

Perhitungan L3(RECDA-K)

 $\lambda i = (\lambda_L + Momentary) x Panjang Saluran$ = (0,2 + 0,003) x 1,2 = 0,2436

Tabel 2. Hasil Perhitungan Frekuensi Section 1.

Peralatan	λ(fault/year)	Repair Time (hours)	U(hours/year)
СВ	0,004	-	0,004
TD (19 TD)	$0,005 \times 19$	-	0,095
Recloser	0,005	-	0,005
L1 (TRAFO GI-TMGS)	0,2	2,3	0,4669
L2 (TRAFO GI- RECDA)	0,2	3,1	0,6293
L3 (RECDA-K)	0,2	1,2	0,2436
L4 (K-GMTK)	0,2	1,9	0,3857
L5 (GMTK-GMT)	0,2	0,9	0,1827
L6 (GMT-KNHK)	0,2	1,6	0,3248
L7 (KNHK-GGCK)	0,2	1,7	0,3451
L8 (GGCK-SGI)	0,2	2,1	0,4263
L9 (KNHK-RSAK)	0,2	1,1	0,2233
L10 (RSAK-SDRM)	0,2	0,6	0,1218
L11 (SDRM-BSPI)	0,2	1,3	0,2639
L12 (BSPI-PSDK)	0,2	1,4	0,2842
L13 (PSDK-PBSK)	0,2	0,6	0,1218
L14 (PSDK-BMTK)	0,2	1,1	0,2233
L15 (BMTK-TGDK)	0,2	1,2	0,2436
L16 (TGDK-TGKR)	0,2	0,9	0,1827
L17 (TGKR-TGKK)	0,2	1,7	0,3451
L18 (TGKK-BT)	0,2	1,1	0,2233
L19 (TGKK-EE)	0,2	1	0,203
L20 (PBSK-POMC)	0,2	1,3	0,2639
L21 (POMC-POMK)	0,2	0,8	0,1624
L22 (POMK-SS0)	0,2	1,9	0,3857

rabel 3. Hash Perhitungan Frekuensi Section 2.				
Peralatan	Failure Rate Peralatan	Panjang Saluran (km)	λ(fault/year)	
SS0	0,003	-	0,003	
TD (21 TD)	$0,005 \times 1$	-	0,105	
L23 (SSO-PDGC)	0,2	1,4	0,2842	
L24 (PDGC-PGRK)	0,2	1,6	0,3248	
L25 (PGRK-MDLR)	0,2	1,4	0,5481	
L26 (MDLR-MALK)	0,2	1,3	0,0609	
L27 (PGRK-COPK)	0,2	2,7	0,2842	
L28 (COPK-COPT)	0,2	0,9	0,1827	
L28 (COPT-COP)	0,2	2,6	0,0812	
L29 (COPT-MDLK)	0,2	0,4	0,5278	
L30 (MDLK-HNIA)	0,2	1	0,203	
L31 (COP-WBCK)	0,2	2,9	0,1218	
L32 (COP-PPKG)	0,2	1,6	0,5887	
L33 (PPKG-RBLK)	0,2	1,4	0,2842	
L34 (WBCK-TMSK)	0,2	2	0,406	
L35 (TMSK-PAPK)	0,2	0,6	0,1218	
L36 (PAPK-PCTA)	0,2	1,3	0,2639	
L37 (PCTA-LBS STM)	0,2	0,4	0,0812	
LBS	0,003	-	0,003	
L38 (LBS-PSM)	0,2	1	0,203	
L39 (PSM-DAM)	0,2	1,1	0,2233	
L40 (DAM-DAMK)	0,2	0,8	0,1827	
L41 (PSM-PSMS)	0,2	1,4	0,0812	
L42 (PSM-LBS STM)	0,2	1,6	0,3248	
L43(PSM-SSOMALEER)	0,2	0,9	0,3654	
L44 (PCTA-LBS SMSAT)	0,2	1,9	0,3857	

Tabel 3. Hasil Perhitungan Frekuensi Section 2.

1) Perhitungan Durasi Kegagalan (U)

Berikut perhitungan durasi kegagalan pada CB dan saluran L1(TRAFO GI-TMGS), L2 (TRAFO GI-K), untuk hasil perhitungan selanjutnya ditampilkan pada Tabel 4.4. Hasil dari perhitungan frekuensi dari *section* 1 dan *section* 2 dimasukkan untuk mencari durasi dari setiap komponennya menggunakan persamaan (4). Yaitu frekuensi dari setiap peralatannya dikalikan dengan waktu perbaikan yang telah ditetapkan oleh SPLN No.59: 1985. Perhitungan CB

 $U = \lambda i$ repair time = 0,004, 10 = 0,04

Perhitungan L1(TRAFO GI-TMGS)

 $U = \lambda i$ repair time = 0,4669 . 3 = 1,4007

Perhitungan L2(TRAFO GI-RECDA)

 $U = \lambda i$ repair time = 0,6293 . 3 = 1,8879

Tabel 4. Hasil Perhitungan Durasi Section 1.

Peralatan	λ(fault/year)	Repair Time (hours)	U(hours/year)
СВ	0,004	10	0,04
TD (19 TD)	0,095	10	0,95
Recloser	0,005	10	0,05
L1 (TRAFO GI-TMGS)	0,4669	3	1,4007
L2 (TRAFO GI- RECDA)	0,6293	3	1,8879
L3 (RECDA-K)	0,2436	3	0,7308
L4 (K-GMTK)	0,3857	3	1,1571
L5 (GMTK-GMT)	0,1827	3	0,5481
L6 (GMT-KNHK)	0,3248	3	0,9744
L7 (KNHK-GGCK)	0,3451	3	1,0353
L8 (GGCK-SGI)	0,4263	3	1,2789
L9 (KNHK-RSAK)	0,2233	3	0,6699
L10 (RSAK-SDRM)	0,1218	3	0,3654
L11 (SDRM-BSPI)	0,2639	3	0,7917
L12 (BSPI-PSDK)	0,2842	3	0,8526
L13 (PSDK-PBSK)	0,1218	3	0,3654
L14 (PSDK-BMTK)	0,2233	3	0,6699
L15 (BMTK-TGDK)	0,2436	3	0,7308
L16 (TGDK-TGKR)	0,1827	3	0,5481
L17 (TGKR-TGKK)	0,3451	3	1,0353
L18 (TGKK-BT)	0,2233	3	0,6699
L19 (TGKK-EE)	0,203	3	0,609
L20 (PBSK-POMC)	0,2639	3	0,7917
L21 (POMC-POMK)	0,1624	3	0,4872
L22 (POMK-SS0)	0,3857	3	1,1571
СВ	0,004	10	0,04

Tabel 5. Hasil Perhitungan Durasi Section 2.

Peralatan	λ(fault/year)	Repair Time (hours)	U(hours/year)
SS0	0,003	10	0,03
TD (21 TD)	0,105	10	1,05
L23 (SSO-PDGC)	0,2842	3	0,8526
L24 (PDGC-PGRK)	0,3248	3	0,9744
L25 (PGRK-MDLR)	0,5481	3	0,8526
L26 (MDLR-MALK)	0,0609	3	0,7917
L27 (PGRK-COPK)	0,2842	3	1,6443
L28 (COPK-COPT)	0,1827	3	0,5481
L28 (COPT-COP)	0,0812	3	1,5834
L29 (COPT-MDLK)	0,5278	3	0,2436
L30 (MDLK-HNIA)	0,203	3	0,609
L31 (COP-WBCK)	0,1218	3	1,7661
L32 (COP-PPKG)	0,5887	3	0,9744
L33 (PPKG-RBLK)	0,2842	3	0,8526
L34 (WBCK-TMSK)	0,406	3	1,218
L35 (TMSK-PAPK)	0,1218	3	0,3654
L36 (PAPK-PCTA)	0,2639	3	0,7917
L37 (PCTA-LBS STM)	0,0812	3	0,2436
LBS	0,003	10	0,03
L38 (LBS-PSM)	0,203	3	0,609
L39 (PSM-DAM)	0,2233	3	0,6699
L40 (DAM-DAMK)	0,1827	3	0,4872
L41 (PSM-PSMS)	0,0812	3	0,8526
L42 (PSM-LBS STM)	0,3248	3	0,9744
L43(PSM-SSOMALEER)	0,3654	3	0,5481
L44 (PCTA-LBS SMSAT)	0,3857	3	1,1571

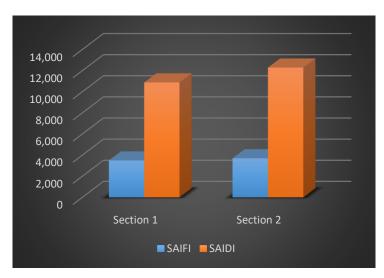
3.3. Perhitungan SAIFI dan SAIDI

1) Perhitungan indeks keandalan section 1 pada penyulang Suci

$$\begin{split} SAIFI &= \frac{\Sigma \left(\lambda_{section \, 1} \, . \, N_{section \, 1} \right)}{\Sigma \, N_{Penyulang \, Suci}} \\ &= \frac{7,3564 \, . \, 6151}{12789} \\ &= 3,5381 \, \text{Kali/Pelanggan/Tahun} \\ SAIDI &= \frac{\Sigma \left(U_{section \, 1} \, . \, N_{section \, 1} \right)}{\Sigma \, N_{Penyulang \, Suci}} \\ &= \frac{22,7972 \, . \, 6151}{12789} \\ &= 10,9645 \, \text{Jam/Pelanggan/Tahun} \end{split}$$

2) Perhitungan indeks keandalan section 2 pada penyulang Suci

$$SAIFI = \frac{\Sigma (\lambda_{section 2} . N_{section 2})}{\Sigma N_{Penyulang Suci}}$$


$$= \frac{7,2416.6638}{12789}$$

$$= 3,7586 \text{ Kali/Pelanggan/Tahun}$$

$$SAIDI = \frac{\Sigma (U_{section 2} . N_{section 2})}{\Sigma N_{Penyulang Suci}}$$

$$= \frac{24,7189.6638}{12789}$$

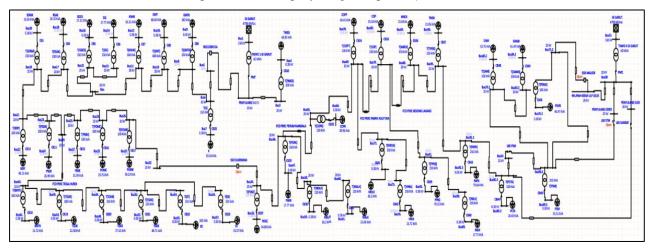
= 12,8300 Jam/Pelanggan/Tahun

Gambar 4. Grafik Hasil Analisis Matematis.

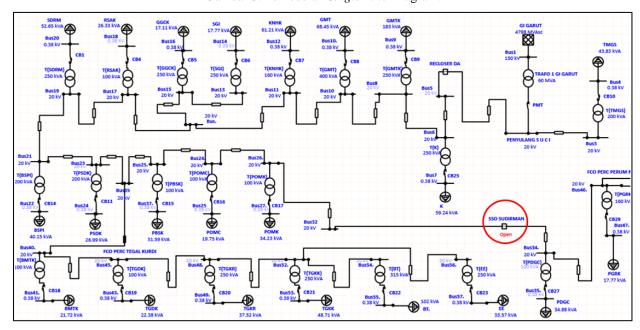
Tabel 6. Rekapitulasi Indeks Keandalan Setiap Section.

No	Danzulana Cuai	Indeks Kea	ndalan
No	Penyulang Suci	SAIFI	SAIDI
1	Section 1	3,5381	10,9645
2	Section 2	3,7586	12,8300
	Total	7,2967	23,7945

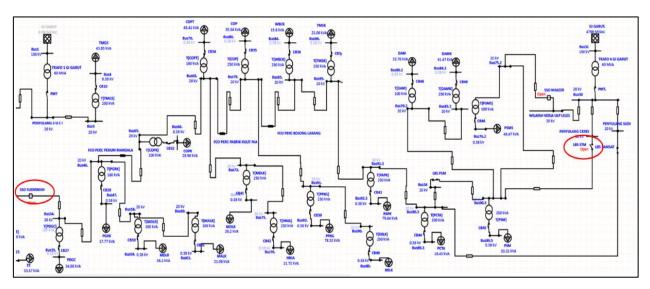
Dapat dilihat dari Gambar 4 dan Tabel 6 bahwa penyulang Suci *section* 1 dan *section* 2 memiliki SAIFI yang kurang andal, yang mana masing-masing melebihi batas 3,3 kali/pelanggan/tahun, setelah digabungkan kedua *section* tersebut memiliki SAIFI dan SAIDI yang kurang andal juga. Berikut Penyesuaian indeks keandalan penyulang Suci dengan SPLN 68-2:1986.


Tabel 7. Penyesuaian dengan SPLN.

Penyu	lang Suci	SPLN 68 -	2:1986
SAIFI	SAIDI	SAIFI (3,3 k/p/t)	SAIDI (21,9 j/p/t)
7,2967	23,7945	×	×


Tabel 7 merupakan hasil akhir dari analisis indeks keandalan penyulang Suci menggunakan metode RIA-section technique, bahwa penyulang Suci belum sesuai indeks keandalan dengan SAIFI dan SAIDI melebihi batas standar yang telah ditetapkan, maka dari itu diperlukan simulasi menggunakan ETAP, guna untuk menemukan suatu solusi dan juga bisa menjadi sebuah usulan dengan penerapan di masa mendatang.

3.4. Pemodelan Sistem dengan Software ETAP


Simulasi menggunakan perangkat lunak ETAP untuk menemukan solusi untuk menurunkan indeks keandalan dan memenuhi kriteria tertentu. Berikut pemodelan SLD penyulang Suci pada *software* ETAP.

Gambar 5. Pemodelan Single Line Diagram.

Gambar 6. Pemodelan Single Line Diagram Section 1.

Gambar 7 Pemodelan single line diagram section 2

3.5. Analisis Indeks Keandalan Menggunakan Software ETAP 19.0.1

Analisis Indeks Keandalan Menggunakan *Software* ETAP 19.0, dengan melakukan 2 kali simulasi yaitu sebelum dan sesudah perbaikan. Untuk yang sebelum perbaikan, guna untuk menyesuaikan terlebih dahulu dengan hasil perhitungan matematis (Nanzain et al., 2017). Berikut hasil simulasi sebelum perbaikan:

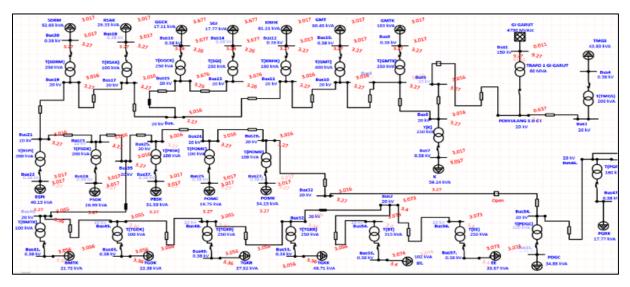
Tabel 8. Hasil Simulasi ETAP Sebelum Perbaikan.

N D 1 C :		Indeks Ko	eandalan
No	Penyulang Suci	SAIFI	SAIDI
1	Section 1	3,8069	12,4290
2	Section 2	3,7383	11,2398
	Total	7,5452	23,6688

Tabel 9. Penyesuaian dengan SPLN.

Penyulang Suci		SPLN 68 – 2 : 1986	
SAIFI	SAIDI	SAIFI (3,3 k/p/t)	SAIDI (21,9 j/p/t)
7,5452	23,6688	×	×

Berikut tabel perbandingan antara hasil perhitungan matematis dengan simulasi ETAP sebelum perbaikan:


Tabel 10. Perbandingan Hasil Matematis Dan Simulasi.

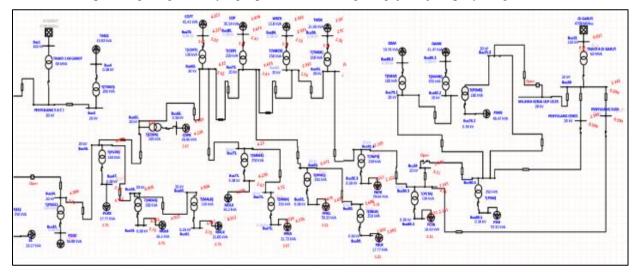
Motodo DIA Section Technique		SPLN 68 -	2:1986		
Metode RIA-Se	Metode RIA-Section Technique		SAIDI		
SAIFI	SAIDI		V		
7,2967	23,7945	×	×		
C:1: C-C ETAD		SPLN 68 -	2:1986		
Siliulasi 30j	Simulasi Software ETAP		SAIDI		
SAIFI	SAIDI	,			
7,5452	23,6688	×	×		

3.6. Perbaikan Indeks Keandalan Penyulang Suci

1) Perbaikan Section 1

Pemodelan setelah perbaikan pada penyulang Suci *section* 1, setelah transformator distribusi KNHK dan sebelum transformator distribusi SGI dan GGCK dipasang 1 buah FCO yang diberi nama FCO Garut Griya Central Kulit dan 1 buah FCO dipasang setelah transformator distribusi TGKK Pemasangan FCO sesuai standar PLN D3.026:2017 dengan tegangan pengenal 24 kV, arus pengenal 100 A dan frekuensi 50 hz, maka dengan penambahan FCO ini akan lebih memproteksi transformator distribusi pada penyulang Suci *section* 1.

Gambar 8. Perbaikan Section 1.


Berikut untuk penerapannya ketika di lapangan:

Gambar 9. Penerapan Di Lapangan Section 1.

2) Perbaikan Section 2

Pemodelan *section* 2 setelah perbaikan, yaitu dengan melakukan pemindahan beberapa transformator distribusi kepada penyulang lain. Dengan membuka LBS (*Load Break Switch*) PSM. Dengan membuka LBS PSM ini ada 4 buah transformator distribusi yang terpisah dari penyulang Suci, yaitu DAM, DAMK, PSM dan PSMS. Dengan dilakukan ini dapat mengurangi beban yang diproteksi serta mengurangi jarak jauh penyulang.

Gambar 10. Perbaikan Section 2.

Berikut untuk penerapannya ketika di lapangan:

Gambar 11. Penerapan di Lapangan Section 2.

Tabel 11. Perbandingan Sebelum Dan Sesudah Perbaikan.

No	Penyulang Suci	Sebelum Perbaikan		Sesudah 1	Perbaikan
		SAIFI	SAIDI	SAIFI	SAIDI
1	Section 1	3,4943	10,8832	3,0867	10,1526
2	Section 2	3,7028	12,2917	3,1274	10,0278
	Total	7,1971	23,1749	6,2141	20,1804

Tabel 12. Penyesuaian dengan SPLN Setelah Perbaikan.

Penyu	lang Suci	SPLN 68 -	2:1986
SAIFI	SAIDI	SAIFI (3,3 k/p/t)	SAIDI (21,9 j/p/t)
6,2141	20,1804	×	✓

3.7. Perbaikan Solusi Ke 2 Penyulang Suci

Gambar 12. Perbaikan Solusi 2 Penyulang Suci.

Solusi yang kedua yaitu dengan membuka SSO dalam keadaan normal dan menutup LBS samsat serta membuka LBS STM, yang mana untuk *section* 2 mendapatkan aliran listrik dari penyulang Sudirman yang melewati gardu hubung terlebih dahulu sebelum mengalir ke *section* 2. Itu secara otomatis penyulang Suci menjadi 2 bagian, yaitu bagian penyulang suci timur dan penyulang suci barat.

Tabel 13. Hasil Perbaikan Solusi 2 Penyulang Suci.

No	Penyulang Suci	Sesudah Perbaikan	
		SAIFI	SAIDI
1	Barat	3,0867	10,1526
2	Timur	3,1274	10,0278

Tabel 14. Penyesuaian SPLN Perbaikan Solusi 2.

SPLN 68 - 2 : 1986		
SAIFI (3,3 k/p/t)	SAIDI (21,9 j/p/t)	
\checkmark	\checkmark	

Maka dari itu ketika menggunakan solusi yang kedua akan mendapat SAIDI dan SAIFI yang sesuai dengan SPLN 68-2:1986, yang mana menurut SPLN 68-2:1986 3,3 kali/pelanggan/tahun untuk SAIFI dan 21,9 jam/pelanggan/tahun.

Kesimpulan

Indeks keandalan yang digunakan pada penelitian ini memakai 2 indikator penting dalam menentukan suatu nilai indeks keandalan yaitu SAIFI (*System Average Interruption Frequency Index*) dan SAIDI (*System Average Interruption Duration Index*). Dalam menentukan nilai indeks keandalan sistem pendistribusian listrik penyulang Suci ULP Garut Kota ini dilakukan perhitungan secara matematis menggunakan metode RIA-section technique dengan rumus yang telah ditentukan serta disimulasikan menggunakan software ETAP dengan study case reliability assessment. Berdasarkan hasil penelitian ini dilakukan suatu perbaikan agar nilai keandalan penyulang stabil. Perbaikan dilakukan 2 kali, untuk perbaikan yang pertama dipasang 2 buah Fuse cut out dan memindahkan 4 buah transformator, sedangkan perbaikan kedua ialah membagi penyulang Suci menjadi 2 bagian, yaitu penyulang Suci barat dan penyulang Suci timur. Maka dengan melakukan perbaikan tersebut indeks keandalan pada penyulang Suci menjadi stabil dan memenuhi apa yang telah ditetapkan oleh SPLN 68-2:1986 yaitu di bawah SAIFI 3,3 kali/pelanggan/ tahun dan SAIDI 21,9 jam/ pelanggan/ tahun dimana sebelumnya nilai SAIFI 3,8 kali/pelanggan/tahun dan SAIDI 12,42 j/p/t menjadi SAIDI 3,08 dan SAIDI 20,18 j/t/p.

Ucapan Terima Kasih

Penulis mengucapkan terima kasih PT. PLN (Persero) ULP Garut Kota atas dukungannya dalam keikutsertaan dalam kegiatan ilmiah ini.

Daftar Notasi

 λ = Indeks gangguan rata – rata / tahun

Ni = Jumlah pelanggan yang mengalami gangguan

N = Total jumlah pelanggan yang dilayani U = Durasi gangguan rata- rata per tahun

Ni = Jumlah pelanggan yang mengalami gangguan N = Total jumlah pelanggan yang dilayani

 λi = Frekuensi kegagalan

 λ_L = Sustained failure rate [λ /km/yr]

Momentary = 0,003

U = Durasi kegagalan λi = Frekuensi kegagalan

 $repair\ time = waktu\ perbaikan\ No.59:1985$

Daftar Pustaka

Budi, G. P., Gandi, A., Keandalan, A., Distribusi..., S., Putu, G., Arigandi, B., Hartati, R. S., & Weking, A. I. (2015). ANALISA KEANDALAN SISTEM DISTRIBUSI PENYULANG KAMPUS DENGAN MENGGUNAKAN PENGGABUNGAN METODE SECTION TECKNIQUE DAN RIA. Dalam *Teknologi Elektro* (Vol. 14, Nomor 2).

- Fatoni, A., Seto Wibowo, R., Soeprijanto, A., & Elektro, J. T. (2016). Analisa Keandalan Sistem Distribusi 20 kV PT.PLN Rayon Lumajang dengan Metode FMEA (Failure Modes and Effects Analysis). *JURNAL TEKNIK ITS*, 5(2).
- Hidayatullah, R. (2017). Analisa Keandalan Sistem Distribusi 20KV Menggunakan Metode Section Technique dan Ria-Section Technique pada Penyulang Adi Sucipto Pekanbaru.
- Kusuma, W., Joto, R., & Mieftah, M. (2022). Analisis Keandalan Sistem Distribusi 20kV Pada Penyulang Pujon PT. PLN (PERSERO) ULP Batu.
- Laboratory, S. (t.t.). *Etap Online*. http://stdelaboratory.blogspot.co.id/2013/11/tentang-etap-electric-transient-and.html
- Luthfiyani, U. K., Setiawan, A., & Arifin, S. (2023). INSOLOGI: Jurnal Sains dan Teknologi Analisis Perbandingan Indeks Keandalan Sistem Jaringan Distribusi dengan Metode Section Technique dan Reliability Index Assessment (RIA): Studi Kasus Gardu Induk Balaraja. *Media Cetak*, 2(1), 250–264. https://doi.org/10.55123/insologi.v2i1.1782
- Maliky, A. T., & Haryudo, S. I. (2020). *Keandalan Sistem Distribusi 20 kV Pada Penyulang Pejangkungan Dengan Metode RIA*. https://ejournal.unesa.ac.id/index.php/JTE/article/view/30122
- PRAYOGI, A. A. (2021). Analisis Keandalan Sistem Distribusi 20 kV pada Penyulang Selapan Jaya dan Penyulang Jahe di PLTBg PT. Sampoerna Agro. *JURNAL SURYA ENERGY*, 6(1), 25. https://doi.org/10.32502/jse.v6i1.3105
- Putri Hesti, L., & Nugraha, A. E. (2023). Analisis Komponen Kritis Mesin Bubut Underfloor Menggunakan Metode Failure Mode and Effect Analysis dan Fault Tree Analysis. VIII(3).
- Sanaky, M. R., Sulistiawati, B., Pembimbing, D., & Nurcahyo, I. E. (t.t.). Peningkatan Indeks Keandalan dengan Penambahan Recloser pada Sistem Distribusi di PLTD Subaim Menggunakan Metode Section Technique.