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Abstract . This paper discusses about application of dissipative concept in dynamical
systems for analysis and synthesis of control systems via linear matrix inequalities
(LMIs). Motivated by dissipativity concept in mechanical and electrical circuit
system, one could employ this concept to check stability and to design a controller of
the underlying system. We derive the solvability condition of dissipativity for an
output feedback LTI continuous system via LMIs. An algorithm to design such
controller that satisfy the dissipativity of the systemis also considered.
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LINTRODUCTION

The study of dissipative concept which used to analyze and design of control systems
was initially developed by Willems [1]. This concept concerns with analysis and
design of control systems using input-output properties based on energy-related
description. Practically, a system has the dissipative property ifit always dissipates the
energy. Dissipation energy is difference between the supply energy and the stored
energy in the system. That property includes the notion that a dissipative system never
stores more energy than its input energy which come from outside. In the past two
decades, there has been a considerable interest in the problems of analysis and
synthesis of Hw and positive real (or passivity-based) control system. The H,
approach builds on the small-gain theorem whereas the positive real approach relies
on the positivity theorem. In H, control, the small-gain theorem is used to ensure
robust stability by requiring that the loop-gain be less than one at all frequencies. In
this scheme, phase information is not used in guaranteeing stability. While, phase
information is considered in positivity theory which is widely used in the analysis of
passive control system. In the positivity theorem, a (strictly) positive real system has
its phase less than 90 degrees so that the loop transfer function of a negative feedback
connection of two (strictly) positive real systems has a phase lag of less than 180
degrees. This guarantees stability irrespective of the loop gain. Clearly, both the small-
gain and positivity theorems deal with gain and phase performances separately and
thus may lead to conservative results in application. A recent paper [2] figures out that
the negative feedback interconnection of two causal, stable, linear time-invariant
systems, with a "mixed” small gain and passivity property, is guaranteed to be finite-
gain stable. However, this lead us to renew dissipative approach which cover both
cases.

To be precise, let's take a look two examples in electrical circuit and mechanical
system to describe the dissipativity concept. Consider a simple circuit consist of a
resistor R, an inductance L, and a capacitor C with current i and voltage u. The
differential equation which govern that system is
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18 ariy, < (1)
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The stored energy in the circuit is

SO
E(L Vo =, Li* 1 ,CV2 ()

The time derivative of equation (2) which states the rate of the energy when system
evolvesis

d . di v
ak(l, l’(‘-) = ];ld—"l'CV(;W (3)

Inserting the differential equation of the circuit (1) into (3)weget
[+ : \ &
ah‘(z, Ve) = ui — Ri? ")
Integration of equation (4) fromt=0to t=T gives
T r
E(i(']"h Vc(T"b) = E(i(O), VC(O\') +} u(t)i(r) dt - [ Ri%(t) dt (3)
n a

That equation means that energy at time t = T is the initial energy plus the energy
supplied to the system by the voltage u minus the energy dissipated by the resistor,
Note that if the input voltage u is zero, and if there is no resistance, then energy E(.) of
the system is constant. Here R 20 and E[i(0),Vc(0)] >0, and it follows that the integral
of the voltage u and the current I satisfies

T
f (@) de > — 6(i(0), V. (0)) (6)
0

The physical interpretation of inequality (6) could be seen from the equivalent
inequality

T
= j w(®)i(e) de < E(i(0),V,(0)) (7)
n

T
which shows that the energy — f u(e)ie) «dr  thatcan be extracted from the system
is less than or equal to the initial energy stored in the system. Another example is
borrowed from a simple mechanical system. Consider a one dimensional mechanical
system with a mass, a spring, and a damper. The equation of motion for small
oscillation of the mechanical system about its equilibrium configuration is

m¥ + Dk + Kx = F(t); x(0) =x,,%(0) =%, (8)

where m is the mass, D is the damper constant, K is the spring stiffness, x is the position
of the mass and F is the force acting on the mass. The energy of the system is the sum of
its kinetic energy and its potential energy, thatis

— 1 1
E(x{£).2(t)) = 5mx2(t) + = Kx2(t) (9)
2 2

Therate of change of the energy of the systemis
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I
L%+I?[+Vs=u (1)

The stored energy in the circuit is

- T .
E(z,VC»=2L1- l ZCV{?' (2)

The time derivative of equation (2) which states the rate of the energy when system
evolvesis

d di dVe
—E(, V) = Li— 4 CV—— .
aFGv) =lig+ =L (@)

Inserting the differential equation of the circuit (1)into (3) we get

d
a—h‘(i, Ve) = ui — Ri® Q)]

Integration of equation (4) fromt=0tot=T gives

T T
E(i(TLV(TY) = E(i(0), Ve(0)) + f u()i(t) de - f Ri%(t) dt (3)
n 9

That equation means that energy at time t = T is the initial energy plus the energy
supplied to the system by the voltage u minus the energy dissipated by the resistor.
Note that if the input voltage u is zero, and if there is no resistance, then energy E(.) of
the system is constant. Here R 20 and E[i(0),Vc(0)] >0, and it follows that the integral
ofthe voltage u and the current I satisfies

T
f u(Dife) de > — B(i(0), V. (0))  (6)
0

The physical interpretation of inequality (6) could be seen from the equivalent
inequality

T
d j w)i(e) de < E(1(0),V,(0)) (7)
n

¢
which shows that the energy — f u(e)7e) r thatcan be extracted from the system
is less than or equal to the initial energy stored in the system. Another example is
borrowed from a simple mechanical system. Consider a one dimensional mechanical
system with a mass, a spring, and a damper. The equation of motion for small
oscillation of the mechanical system about ts equilibrium configuration is

m¥ + Dx + Kx = F(t); x(0) = 24, %(0) = %, (8)

where mis the mass, D is the damper constant, K is the spring stiffness, x is the position
ofthe mass and F is the force acting on the mass. The energy of the system is the sum of
its Kinetic energy and its potential energy, thatis

e 1 1
E(x(_t).;'c(_t)) =smx2(t) + El(xz(t) 9)

Therate of change of the energy of the systemis
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o
T k() (1)) = me(O)#E) + Kx(O)x()  (10)
Substituting the equation of the motion (8) into (10) yield

%h'(x(t),x(t}) =Fx(L) = Dx2() (11)

Integration of that equation fromt=0to t=T gives

T T
E(x(T), ;i‘(T)) = E(x‘(ﬂ),i'(O)) + " F(t)x(t) dt — [ Dx%(t) dt (12)
Jo o

Similar to energy equation in the electrical circuit we could interpret that the energy at
time t = T is the initial energy plus the energy supplied to the system by the control
force F minus the energy dissipated by the damper. Note that if the input F equals to
zero, and if there is no damping, then the energy E(.) of the system is constant. Here D

20and E[x(0),

T
[ Fow(ty > —E(x(0),v(0)) (13)
Y0
The physical interpretation of inequality (13) could be drawn from the equivalent
inequality

= ] F(yw(t) < L(x(0),v(0)) (1M

T .
which shows that the energy - fn rinvic)ar  that can be extracted from the system is less
than or equal to the initial energy stored in the system.

By observing those examples, as seen in equation (4) and (11), one concludes that a
dissipative system could be characterized by the power balance equation which states
that the rate of change of the energy of the system is equal to the power input injected
into the system minus the rate of dissipation energy in the system. Since inreal system,
dissipation energy always happen, the rate change of the energy of the system always
less than or equal to power supply into the system. Using mathematical abstraction of
the notions of physical power and energy, researchers have developed the stability
analysis and designed the controller for various applications in dissipative systems
framework. To name a few, Gupta [3] employed that concept to derive robust
stabilization of uncertain systems, Moreno [4] designed observers for a class of
nonlinear systems via dissipative method, Stain [5] proposed the dissipative concept
for analyze of interconnected oscillators, and Lim, et. al. [6] applied a (non-smooth)
dissipative framework for analysis of linear parameter-varying system. The recent
paper by Willems [7] introduces dissipativity in the setting of behavioral system.

II. PRELIMINARIES
Consider a dynamic system in state space form % = f(x,u,t) = g(x, u, 1), where x

denotes the system state, u represents input to the system, y is the system output, and
two functions f and g describe the system dynamics. This system is said to be
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C:sipative, according to [1], if there exists an absolutely integrable function of the
input and the output, the power function p(u,y) (referred to as the supply rate in [1])
and a function of the system state, the energy-like function ¥(x) 20 (referred to as the
storage function in [1]) such that

vl
V(x(2)) < V(x(0)) +j p(u(s). y(s)) ds (15)

holds along all possible trajectories of the system, starting at x(0), for all x(0), 120, or
equivalently : for all admissible controllers u(.) that drive the state from x(0) tox(7) on
the interval /0, ¢]. In differential form, (15) can be written as follows

V(x) < p(u(!.),y(L))

Equation (16) stipulates that the rate of change of the stored energy 1s less than or equal
to the input power, the difference being the rate of the energy dissipation. The key
property of a dissipative dynamical system is that the total energy stored in the system
decreases with time, In this case, there exists an intimately link to Lyapunov stability.
Willems [7] said that the notion of a dissipative system is a natural generalization of a
Lyapunov function to open systems. A difference between two approaches is that the
state of the system and the equilibrium point are notions that required in Lyapunov
approach, while the dissipative approach is rather based on the input-output behavior
of the plant. The concept of dissipativity is closely connected to that of a storage
function. These functions provide convenient Lyapunov functions in stability analysis
of the system. Moreover, it has been shown for linear time-invariant systems [1] that
dissipativity is equivalent to existence of a storage function. Concerning with
Lyapunov stability, equation (16) is a condition for time derivative of Lyapunov
function if we set the supply rate p(u,)) to be zero. Thus, analysis dissipativity was
begun with find a storage function (as a Lyapunov function candidate) which satisfy
(16) withrespect to a certain supply rate.

In Hs-control problem, or more general terminology finite L,-gain [11], its
performance measure is assigned by systemnorm 14¢s)l.. < v which satisfy

2 ¥
j vy yit) dr < y"‘f w(@®u(t) dr (17)
n

0
orall TE[0,=). Thus, these systems is dissipative with respect to the supply rate
Pl y) = yu(t)"u(z) — y(t)"y(t)

While, in passive system are characterized by the input output property

—_-

[y(t)"‘u(t) dt >0 (18)

forall T € [0, w). This condition corresponds to dissipativity with respect to p(u, y) =
Y ue) 1+ ulr)" yie).
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IIL. LMI FORMULATION FOR DISSIPATIVE CONTROL

Consider the LTI continuous time system as the following form

(&£ =Ax + Bu
‘\v=Cx+ Du

where x € R" is state vector, u € % and y € R are input and output, respectively. We will
assume that 4, B, C, and D are of suitable dimensions. Next, consider quadratic supply rate
function of the form

e P P N Y
pnur =1 NT RJ u] (20

where dimension of matrices Q, N, and R are determined by those of y and u, and
where Q and R are symmetric matrices. The following proposition characterizes the
dissipativity ofan LTI systems.

&

Proposition 1. Consider the system G given by (19). If there exists a positive definite
matrix P which satisfies the following

AP + PA PB—-C"N (A C)
(B"'P -N'C —R—=N'D-D'N D’@) 21)
©’C oTn —1
the system is dissipative and asymptotically stable, by noting that 0= -@’@.

Proof': The proposition can be proved by assign a candidate Lyapunov function V(x) =
x"Px. Taking time derivative of that function, substituting the state space of (19) into
that form, and employing the dissipation inequality (16), one can get

(ATI’— PA l’b", ( CQcC C'QD +C"N ) .0
G'P / \DTQC+NTC D'QD-N'D-D'N+R

The last matrix inequality is nothing more than Schur Complement of (21).

Remark : Finite L,-gain control problem is dissipative with respect to the specific
supply rate function y*u"u —y7y thatis the quadratic supply rate in (20) with Q=—1,
N=0,and R= VI, while passive systems are dissipative with respect to the supply
rate (20) withR = Q =0, and N = I. Now, consider the general framework of control
synthesis depicted in fig. 1.

W ————n ———e

G,

=
¥ Fig. 1. Closed-loop system ‘ /
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In that figure, G, is the generalized plant, K is the controller to be designed, withhe\
disturbance,  is the control input, y is the measurement, and z is the controlled output.
We consider an LTI continuous system given in the state space as follows

7= (yx — DyyW+ Dppt - (22)

x — /Ax + Byw + Bou
G :t
y=0% 1 DyyWw | Dyt

where A, B, C,, and D, are matrices whose dimensions compatible withx, w, u, z, and y.
Dynamics of the controller K'is represented by

B = Ak | Byy
ol {u — C% + Dyy (=)

where A,, B,, Cy, and D, are of suitable dimension matrices. The feedback system (22)
and (23) is rewritten in state space form as

2, =Axo + Bw

24)
z = Cox. % DWW
where
g ( A+ BJRD},’C) BQRC;; )
€ ByCy + By DyaliD Oy A + By Dy RECy

i =( By | ByRDy Dy )
¢~ \ByDyy — BxD22RDxDoy

0. (C, 4 D aRDgCs - DaRCy)

0, = Dag + Dy2R DDz

To simplify calculation, we assume, without loss of generality that D,, = 0. Then the
above system matrices can be represented by
A= Ag + RO
B,‘ = Bn + B(I’D-p-l
Co= Co + Dy, ®C
Dt: = D11 +D17¢D'.’1
A 0 Y 0 b‘-
| [ — . - =
o (OB u)' % gl ,0)
= TRy, A =
B"_(QJ' c _((,‘2 n)
Co=(C O Dy =(0 Dy)

Diss —(D‘ll) _ )

where

R
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and

_ (A B;
¢ = (e ) e

To formulate the dissipative control synthesis problem for system (24), consider
quadratic supply rate function described by

P AT T

Given the closed-loop system (22) and quadratic supply rate (27), the dissipative
control synthesis problem is formulated as follows : Find controller K of the form (23)
such that the closed loop system (24) is asymptotically stable when w = 0 and
dissipative with respect to quadratic supply rate (27).

The feedback system is said to have dissipative performance if there is a positive
definite symmetric matrix P which satisfies (21). Now, we will present the main result \
of this paper in the following theorem.

|
Theorem 1. Consider the feedback system that is constructed by (22)-(23). Suppose that

output feedback dissipative performarce control problem formulated above has a solution.

Then there exists symmetric positive definite matrices ¥ and I" such that the following LMIs
are satisfied. w

s {ATE =iA LBy = CI'N Clo\
("‘(’)1 ?) BRI —N"C, =R = NTDyy = DN /);;@) (’gl ?) <0 (28)
'c, ©'Dy, -1
! AN + AT By —‘ICTN G,
N ( BT -N'C,¥ -R-N'D,-DRLN DILO |Ng <0 (29)
SCRAET o @;D“ =1
( ; 1_) >0 (30)

where Ny is a matrix whose columms form the bases of mull space of (C; Ds;) and Ny is a
matrix whose colunms form the bases of null space of (8; -D,N DI,@).

Proof : Using proposition 1, one can write down the dissipativity condition for the
feedback system (22)-(23) withrespect to supply rate function (27) is as follows

M1 GreTP I PTead <0 (31) |

where

-

BIP-N"C, —-R-N'D,,-DR,N DIL,®

(32)
O Co O Dy - /

" Py + ATP PBy—CIN 7o
M= (
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PR\
P:= N"'Dn) (33)
G‘)Tﬁ:z

@=( D,, O (39

Moreover, by employ the elimination of matrix variable (§2.6.2 in [8]), there exists a matrix
® in (31), if and only if

NgMNy <O, NIMNp <0 (35)
holds, where N5 and N are matrices whose columns form the bases of null space of ' and
P, respectively. Partitioning Pand its inverse as follows

Y & e ST 2 |
ol (I]"‘ 4)'P - (1’ 1-) (36)
where Y and ¥ are n x n symmetric matrices, it can be easily shown that the first inequality
of (35) is equivalent to (28).

On the other hand, it can also be readily established that the condition Ng MN s < 0 of (35) is
equivalent to (29). Finally, it follows from Lemma 7.2 in [9] that the existence of a matrix P
> 0 satisfying (36) is equivalent to (30).

Theorem 1 provides a quite general results regarding convex characterization for the
dissipative control problem of an LTI system to have a solution. Generality of this theorem is
provided by roting that finite [;-gain and passivity condition are obtained by choosing the
appropriate supply rate function in the general results. Specifically, finite L-gain are
obtained by selecting K = */,N =0, and Q= - [ and setting Ny as

W, 0
W, 0

with (W7 WJ)T is the bases of null space of (8] DT,).

While passivity are recovered by choosing Q=R =0 and N=1, and setting Ny as

W, 0
(#, o
\0 [

where (W" W3 )" is the bases of null space of (B D1,).

When the conditions of Theorem 1 are fulfilled, the computation of a controller that solves
the dissipative control problem can be carried out along the lines of the procedure proposed
by Gahinet and Apkarian [10]. Assuming that the conditions (28)-(30) are satisfied for some
matrices " and ', a suitable controller can be found as follows :

\_ | Y,
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* Conpute two full-column rank real matrices ITand Y such that YIT=7- ¥T"
* Find the unique solution 2> 0 of the linear equation ;

(& D=rll 3 o

* With the P matrix, conpute the controller parameters Ax, Bx, Ck and Dk by solving the
LM (31).

IV.CONCLUSIONS

This paper describes dissipative approach to analyze and design of control systems by
using LMIs. The main result presented here is the solvability condition of dissipativity
of an output feedback LTI continuous control system problem. Such problem is
solvable if there exist two matrices which satisfy three LMIs in Theorem 1. An
algorithm to construct the controller for that problem is also derived.
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