Pengembangan Katalis Berbasis Tungsten Oksida (WO3) untuk Degradasi Limbah Palm Oil Mill Effluent (POME) dengan Teknologi Fotokatalitik

Authors

  • Rospita Uli Institut Teknologi Bandung
  • Wibawa Hendra Saputera Institut Teknologi Bandung
  • Dwiwahju Sasongko Institut Teknologi Bandung
  • Hary Devianto Institut Teknologi Bandung

DOI:

https://doi.org/10.55893/jt.vol24no1.664

Keywords:

WO3, POME, Photocatalysis, AOPs, COD

Abstract

The palm oil industry generates significant waste, such as POME, which can pollute the environment if not properly managed. POME can particularry damage aquatic ecosystems. Treating POME is crucial for the sustainability of this industry. Advanced Oxidation Processes (AOPs), including photocatalysis, are being developed as a technological option to degrade organic compounds in POME waste. In this study, the photocatalytic degradation of POME waste using WO3-based catalysts and a 500 W Xenon lamp showed that this method effectively breaks down POME waste. WO3 photocatalysts were synthesized using a hydrothermal method at temperatures of 180, 200, 220, and 240°C, resulting in hexagonal and orthorhombic crystal structures and Type V mesopores. Using WO3 at a concentration of 1 g/L can reduce Chemical Oxygen Demand (COD) up to 48.05% , color degradation by 36.22%, with a COD reaction rate constant of 3.7×10-3 min-1.

Author Biographies

  • Rospita Uli, Institut Teknologi Bandung

    Chemical Engineering Study Programme

  • Wibawa Hendra Saputera, Institut Teknologi Bandung

    Chemical Engineering Study Programme

  • Dwiwahju Sasongko, Institut Teknologi Bandung

    Chemical Engineering Study Programme

  • Hary Devianto, Institut Teknologi Bandung

    Chemical Engineering Study Programme

References

Amadine, O., Essamlali, Y., Fihri, A., Larzek, M., & Zahouily, M. (2017). Effect of calcination temperature on the structure and catalytic performance of copper-ceria mixed oxide catalysts in phenol hydroxylation. RSC Advances, 7(21), 12586–12597. https://doi.org/10.1039/c7ra00734e

Ameta, R., Benjamin, S., Ameta, A., & Ameta, S. C. (2013). Photocatalytic degradation of organic pollutants: A review. Materials Science Forum, 734, 247–272. https://doi.org/10.4028/www.scientific.net/MSF.734.247

Aqilah, N., Razali, M., Norharyati, W., Salleh, W., Rosman, N., & Hafiza, N. (2021). Materials Today: Proceedings Palm oil mill effluent treatment using tungsten trioxide: Adsorption and photocatalytic degradation. Materials Today: Proceedings, 41, 22-27. https://doi.org/10.1016/j.matpr.2020.08.424

Cheng, C. K., Rizauddin Derahman, M., & Khan, M. R. (2015). Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania. Journal of Environmental Chemical Engineering, 3(1), 261–270. https://doi.org/10.1016/j.jece.2014.10.016

Cheng, H., Wang, J., Zhao, Y., & Han, X. (2014). Effect of phase composition, morphology, and specific surface area on the photocatalytic activity of TiO2 nanomaterials. RSC Advances, 4(87), 47031–47038. https://doi.org/10.1039/c4ra05509h

Fakhri, A., & Behrouz, S. (2015). Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation. Solar Energy, 112, 163–168. https://doi.org/10.1016/j.solener.2014.11.014

Jiang, S., You, Z., & Tang, N. (2023). Effects of Calcination Temperature and Calcination Atmosphere on the Performance of CO3O4 Catalysts for the Catalytic Oxidation of Toluene. Processes, 11(7). https://doi.org/10.3390/pr11072087

Lv, K., Li, J., Qing, X., Li, W., & Chen, Q. (2011). Synthesis and photo-degradation application of WO3/TiO2 hollow spheres. Journal of Hazardous Materials, 189(1–2), 329–335. https://doi.org/10.1016/j.jhazmat.2011.02.038

Ng, K. H., Lee, C. H., Khan, M. R., & Cheng, C. K. (2016). Photocatalytic degradation of recalcitrant POME waste by using silver doped titania: Photokinetics and scavenging studies. Chemical Engineering Journal, 286, 282–290. https://doi.org/10.1016/j.cej.2015.10.072

Prabhu, S., Cindrella, L., Kwon, O. J., & Mohanraju, K. (2018). Photoelectrochemical and photocatalytic activity of TiO2-WO3 heterostructures boosted by mutual interaction. Materials Science in Semiconductor Processing, 88(June), 10–19. https://doi.org/10.1016/j.mssp.2018.07.028

Putri, R. M., Almunadya, N. S., Amri, A. F., Afnan, N. T., Nurachman, Z., Devianto, H., & Saputera, W. H. (2022). Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation. ACS Omega, 7(48), 44047–44056. https://doi.org/10.1021/acsomega.2c05450

Qin, Y., Xun, S., Zhan, L., Lu, Q., He, M., Jiang, W., Li, H., Zhang, M., Zhu, W., & Li, H. (2017). Synthesis of mesoporous WO3/TiO2 catalyst and its excellent catalytic performance for the oxidation of dibenzothiophene. New Journal of Chemistry, 41(2), 569–578. https://doi.org/10.1039/c6nj02503j

Razali, N. A. M., Salleh, W. N. W., Aziz, F., Jye, L. W., Yusof, N., Jaafar, J., & Ismail, A. F. (2022). Influence of g-C3N4 and PANI onto WO3 photocatalyst on the photocatalytic degradation of POME. Materials Today: Proceedings, 65, 3054–3059. https://doi.org/10.1016/j.matpr.2022.04.118

Saputera, W. H., Amri, A. F., Mukti, R. R., Suendo, V., Devianto, H., & Sasongko, D. (2021). Photocatalytic degradation of palm oil mill effluent (Pome) waste using bivo4 based catalysts. Molecules, 26(20). https://doi.org/10.3390/molecules26206225

Shang, X., Hu, G., He, C., Zhao, J., Zhang, F., Xu, Y., Zhang, Y., Li, J., & Chen, J. (2012). Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant. Journal of Industrial and Engineering Chemistry, 18(1), 513–519. https://doi.org/10.1016/j.jiec.2011.11.070

Shariah Ghazali, S., Jusoh, R., & Haslinda Shariffuddin, J. (2019). Parameter Affecting Photocatalytic Degradation of POME using LaCa as Photocatalyst. Materials Today: Proceedings, 19, 1173–1182. https://doi.org/10.1016/j.matpr.2019.11.120

Wang, Q., Zhang, W., Hu, X., Xu, L., Chen, G., & Li, X. (2021). Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light. Journal of Water Process Engineering, 40(July 2020), 101943. https://doi.org/10.1016/j.jwpe.2021.101943

Xu, T., Wang, Y., Zhou, X., Zheng, X., Xu, Q., Chen, Z., Ren, Y., & Yan, B. (2017). Fabrication and assembly of two-dimensional TiO2 /WO3·H2O heterostructures with type II band alignment for enhanced photocatalytic performance. Applied Surface Science, 403, 564–571. https://doi.org/10.1016/j.apsusc.2017.01.242

Zhu, X., Zhang, P., Li, B., Hu, Q., Su, W., Dong, L., & Wang, F. (2017). Preparation, characterization and photocatalytic properties of La/WO3 composites. Journal of Materials Science: Materials in Electronics, 28(16), 12158–12167. https://doi.org/10.1007/s10854-017-7030-3

Additional Files

Published

2025-06-02

How to Cite

Pengembangan Katalis Berbasis Tungsten Oksida (WO3) untuk Degradasi Limbah Palm Oil Mill Effluent (POME) dengan Teknologi Fotokatalitik. (2025). Jurnal Teknik: Media Pengembangan Ilmu Dan Aplikasi Teknik, 24(1), 34-42. https://doi.org/10.55893/jt.vol24no1.664