Pengembangan Katalis Berbasis Tungsten Oksida (WO3) untuk Degradasi Limbah Palm Oil Mill Effluent (POME) dengan Teknologi Fotokatalitik
DOI:
https://doi.org/10.55893/jt.vol24no1.664Keywords:
WO3, POME, Photocatalysis, AOPs, CODAbstract
The palm oil industry generates significant waste, such as POME, which can pollute the environment if not properly managed. POME can particularry damage aquatic ecosystems. Treating POME is crucial for the sustainability of this industry. Advanced Oxidation Processes (AOPs), including photocatalysis, are being developed as a technological option to degrade organic compounds in POME waste. In this study, the photocatalytic degradation of POME waste using WO3-based catalysts and a 500 W Xenon lamp showed that this method effectively breaks down POME waste. WO3 photocatalysts were synthesized using a hydrothermal method at temperatures of 180, 200, 220, and 240°C, resulting in hexagonal and orthorhombic crystal structures and Type V mesopores. Using WO3 at a concentration of 1 g/L can reduce Chemical Oxygen Demand (COD) up to 48.05% , color degradation by 36.22%, with a COD reaction rate constant of 3.7×10-3 min-1.
References
Amadine, O., Essamlali, Y., Fihri, A., Larzek, M., & Zahouily, M. (2017). Effect of calcination temperature on the structure and catalytic performance of copper-ceria mixed oxide catalysts in phenol hydroxylation. RSC Advances, 7(21), 12586–12597. https://doi.org/10.1039/c7ra00734e
Ameta, R., Benjamin, S., Ameta, A., & Ameta, S. C. (2013). Photocatalytic degradation of organic pollutants: A review. Materials Science Forum, 734, 247–272. https://doi.org/10.4028/www.scientific.net/MSF.734.247
Aqilah, N., Razali, M., Norharyati, W., Salleh, W., Rosman, N., & Hafiza, N. (2021). Materials Today: Proceedings Palm oil mill effluent treatment using tungsten trioxide: Adsorption and photocatalytic degradation. Materials Today: Proceedings, 41, 22-27. https://doi.org/10.1016/j.matpr.2020.08.424
Cheng, C. K., Rizauddin Derahman, M., & Khan, M. R. (2015). Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania. Journal of Environmental Chemical Engineering, 3(1), 261–270. https://doi.org/10.1016/j.jece.2014.10.016
Cheng, H., Wang, J., Zhao, Y., & Han, X. (2014). Effect of phase composition, morphology, and specific surface area on the photocatalytic activity of TiO2 nanomaterials. RSC Advances, 4(87), 47031–47038. https://doi.org/10.1039/c4ra05509h
Fakhri, A., & Behrouz, S. (2015). Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation. Solar Energy, 112, 163–168. https://doi.org/10.1016/j.solener.2014.11.014
Jiang, S., You, Z., & Tang, N. (2023). Effects of Calcination Temperature and Calcination Atmosphere on the Performance of CO3O4 Catalysts for the Catalytic Oxidation of Toluene. Processes, 11(7). https://doi.org/10.3390/pr11072087
Lv, K., Li, J., Qing, X., Li, W., & Chen, Q. (2011). Synthesis and photo-degradation application of WO3/TiO2 hollow spheres. Journal of Hazardous Materials, 189(1–2), 329–335. https://doi.org/10.1016/j.jhazmat.2011.02.038
Ng, K. H., Lee, C. H., Khan, M. R., & Cheng, C. K. (2016). Photocatalytic degradation of recalcitrant POME waste by using silver doped titania: Photokinetics and scavenging studies. Chemical Engineering Journal, 286, 282–290. https://doi.org/10.1016/j.cej.2015.10.072
Prabhu, S., Cindrella, L., Kwon, O. J., & Mohanraju, K. (2018). Photoelectrochemical and photocatalytic activity of TiO2-WO3 heterostructures boosted by mutual interaction. Materials Science in Semiconductor Processing, 88(June), 10–19. https://doi.org/10.1016/j.mssp.2018.07.028
Putri, R. M., Almunadya, N. S., Amri, A. F., Afnan, N. T., Nurachman, Z., Devianto, H., & Saputera, W. H. (2022). Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation. ACS Omega, 7(48), 44047–44056. https://doi.org/10.1021/acsomega.2c05450
Qin, Y., Xun, S., Zhan, L., Lu, Q., He, M., Jiang, W., Li, H., Zhang, M., Zhu, W., & Li, H. (2017). Synthesis of mesoporous WO3/TiO2 catalyst and its excellent catalytic performance for the oxidation of dibenzothiophene. New Journal of Chemistry, 41(2), 569–578. https://doi.org/10.1039/c6nj02503j
Razali, N. A. M., Salleh, W. N. W., Aziz, F., Jye, L. W., Yusof, N., Jaafar, J., & Ismail, A. F. (2022). Influence of g-C3N4 and PANI onto WO3 photocatalyst on the photocatalytic degradation of POME. Materials Today: Proceedings, 65, 3054–3059. https://doi.org/10.1016/j.matpr.2022.04.118
Saputera, W. H., Amri, A. F., Mukti, R. R., Suendo, V., Devianto, H., & Sasongko, D. (2021). Photocatalytic degradation of palm oil mill effluent (Pome) waste using bivo4 based catalysts. Molecules, 26(20). https://doi.org/10.3390/molecules26206225
Shang, X., Hu, G., He, C., Zhao, J., Zhang, F., Xu, Y., Zhang, Y., Li, J., & Chen, J. (2012). Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant. Journal of Industrial and Engineering Chemistry, 18(1), 513–519. https://doi.org/10.1016/j.jiec.2011.11.070
Shariah Ghazali, S., Jusoh, R., & Haslinda Shariffuddin, J. (2019). Parameter Affecting Photocatalytic Degradation of POME using LaCa as Photocatalyst. Materials Today: Proceedings, 19, 1173–1182. https://doi.org/10.1016/j.matpr.2019.11.120
Wang, Q., Zhang, W., Hu, X., Xu, L., Chen, G., & Li, X. (2021). Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light. Journal of Water Process Engineering, 40(July 2020), 101943. https://doi.org/10.1016/j.jwpe.2021.101943
Xu, T., Wang, Y., Zhou, X., Zheng, X., Xu, Q., Chen, Z., Ren, Y., & Yan, B. (2017). Fabrication and assembly of two-dimensional TiO2 /WO3·H2O heterostructures with type II band alignment for enhanced photocatalytic performance. Applied Surface Science, 403, 564–571. https://doi.org/10.1016/j.apsusc.2017.01.242
Zhu, X., Zhang, P., Li, B., Hu, Q., Su, W., Dong, L., & Wang, F. (2017). Preparation, characterization and photocatalytic properties of La/WO3 composites. Journal of Materials Science: Materials in Electronics, 28(16), 12158–12167. https://doi.org/10.1007/s10854-017-7030-3
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 Rospita Uli, Wibawa Hendra Saputera, Dwiwahju Sasongko, Hary Devianto

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Penulis yang menyerahkan artikel di Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik untuk keperluan publikasi telah mengetahui bahwa Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik memberikan akses terbuka terhadap konten untuk mendukung pertukaran informasi mengenai ilmu pengetahuan, sesuai dengan penerbitan daring yang berbasis Open Access Journal dan mengikuti Creative Commons Attribution 4.0 International License. Sehingga penulis setuju dengan ketentuan-ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak publikasi pertama kepada pihak jurnal dengan pekerjaan secara bersamaan
di bawah Creative Commons Attribution 4.0 International License yang memungkinkan orang lain untuk berbagi pekerjaan
dengan pengakuan kepengarangan karya dan publikasi pertama artikel tersebut di Jurnal Teknik: Media Pengembangan dan
Aplikasi Teknik.
2. Penulis dapat melakukan perjanjian tambahan untuk hak distribusi non-eksklusif artikel yang telah diterbitkan di jurnal ini
(misalnya, posting ke sebuah repositori institusi atau menerbitkannya dalam sebuah buku), dengan mengakui bahwa
publikasi pertama dilakukan di Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik.
3. Penulis diizinkan dan didorong untuk menyebarkan karya mereka secara daring (misalnya, dalam repositori institusi atau
laman web penulis) setelah artikel terbit (proses penerbitan artikel selesai). Hal ini terkait dengan imbas dari pertukaran
informasi yang produktif (Lihat Pengaruh Open Access).