Hidrogenasi Hidrotermal Katalitik Asam Oleat dengan Produksi Hidrogen secara in-situ Menggunakan Katalis NiO/y-Al2O3

Authors

  • Federiko Markus Lasardo Nainggolan Institut Teknologi Bandung
  • Tirto Prakoso Institut Teknologi Bandung
  • Meiti Pratiwi Bandung Institute of Technology

DOI:

https://doi.org/10.55893/jt.vol22no2.580

Keywords:

hydrogenation, hydrothermal, oleic acid, in-situ H2 production, addition of Sn metal

Abstract

Hydrogenation reaction is one of the most important reactions for the oleochemical industry to convert unsaturated fatty acids into saturated fatty acids and their derivatives. The need for large amounts of hydrogen in hydrogenation reactions will be a problem in terms of hydrogen availability and economy. Catalytic hydrothermal technology offers several advantages including the ability to produce hydrogen in-situ. The focus of this research is to evaluate the effect of metal charge addition on the catalyst, the effect of tin addition on NiO/y-Al2O3 catalyst and the effect of glycerol addition as a source of H2 production in-situ on the hydrogenation conversion of oleic acid. The catalyst was prepared by dry impregnation method. XRD, XRF and BET characterization of the catalysts confirmed the presence of Ni and Sn metals on the catalysts. Hydrogenation conversion in the reaction without glycerol using NiO/y-Al2O3 catalyst at 300oC for 6 hours did not show significant changes with the addition of metal loading. However, the addition of Sn metal increased the selectivity of in-situ H2 production used to hydrogenate oleic acid with a hydrogenation conversion of 36%. The addition of glycerol to the reactants also increased the hydrogenation conversion compared to the reaction without glycerol.

Author Biographies

  • Federiko Markus Lasardo Nainggolan, Institut Teknologi Bandung

    Chemical Engineering

  • Tirto Prakoso, Institut Teknologi Bandung

    Chemical Engineering

  • Meiti Pratiwi, Bandung Institute of Technology

    Chemical Engineering

References

Al Alwan, B., Salley, S. O., & Ng, K. Y. S. (2015). Biofuels production from hydrothermal decarboxylation of oleic acid and soybean oil over Ni-based transition metal carbides supported on Al-SBA-15. Applied Catalysis A: General, 498, 32–40. https://doi.org/10.1016/J.APCATA.2015.03.012

Aurélio, C., Crisóstomo, B., Almeida, S. S., & Soares, R. R. (2021). Towards triglycerides-based biorefineries: Hydrolysis-reforming-hydrogenation in one-pot over Ni/y-Al2O3 based catalysts. Catalysis Today, 367, 124–136. https://doi.org/10.1016/j.cattod.2020.07.020

Bion, N., & Duprez, D. (2016). Water splitting as a tool for obtaining insight into metal–support interactions in catalysis. Comptes Rendus Chimie, 19(10), 1326–1336. https://doi.org/10.1016/J.CRCI.2015.11.020

Costa, C. Z., Sousa-Aguiar, E. F., Couto, M. A. P. G., & Filho, J. F. S. de C. (2020). Hydrothermal Treatment of Vegetable Oils and Fats Aiming at Yielding Hydrocarbons: A Review. Catalysts 2020, Vol. 10, Page 843, 10(8), 843. https://doi.org/10.3390/CATAL10080843

Díaz, G. C., Tapanes, N. de la C. O., Câmara, L. D. T., & Aranda, D. A. G. (2014). Glycerol conversion in the experimental study of catalytic hydrolysis of triglycerides for fatty acids production using Ni or Pd on Al2O3 or SiO2. Renewable Energy, 64, 113–122. https://doi.org/10.1016/J.RENENE.2013.11.006

Domínguez-Barroso, V., Herrera, C., Larrubia, M. Á., & Alemany, L. J. (2019). Coupling of glycerol-APR and in situ hydrodeoxygenation of fatty acid to produce hydrocarbons. Fuel Processing Technology, 190, 21–28. https://doi.org/10.1016/J.FUPROC.2019.03.011

Domínguez-Barroso, M. V., Herrera, C., Larrubia, M. A., & Alemany, L. J. (2016). Diesel oil-like hydrocarbon production from vegetable oil in a single process over Pt-Ni/Al2O3 and Pd/C combined catalysts. Fuel Processing Technology, 148, 110–116. https://doi.org/10.1016/J.FUPROC.2016.02.032

Hollak, S. A. W., Ariëns, M. A., De Jong, K. P., & Van Es, D. S. (2014). Hydrothermal Deoxygenation of Triglycerides over Pd/C aided by In Situ Hydrogen Production from Glycerol Reforming. ChemSusChem, 7(4), 1057–1062. https://doi.org/10.1002/CSSC.201301145

Hossain, M. Z., Chowdhury, M. B. I., Jhawar, A. K., Xu, W. Z., Biesinger, M. C., & Charpentier, P. A. (2018). Continuous Hydrothermal Decarboxylation of Fatty Acids and Their Derivatives into Liquid Hydrocarbons Using Mo/Al2O3 Catalyst. ACS Omega, 3(6), 7046–7060. https://doi.org/10.1021/ACSOMEGA.8B00562/ASSET/IMAGES/MEDIUM/AO-2018-00562E_M002.GIF

Kim, J. K. (2019). PEG-assisted Sol-gel Synthesis of Compact Nickel Oxide Hole-Selective Layer with Modified Interfacial Properties for Organic Solar Cells. Polymers 2019, Vol. 11, Page 120, 11(1), 120. https://doi.org/10.3390/POLYM11010120

Miao, C., Marin-Flores, O., Davidson, S. D., Li, T., Dong, T., Gao, D., Wang, Y., Garcia-Pérez, M., & Chen, S. (2016). Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst. Fuel, 166, 302–308. https://doi.org/10.1016/J.FUEL.2015.10.120

Rodiansono, R., Astuti, M. D., Ghofur, A., & Sembiring, K. C. (2015). Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10(2), 192–200. https://doi.org/10.9767/BCREC.10.2.8284.192-200

Yao, X., Strathmann, T. J., Li, Y., Cronmiller, L. E., Ma, H., & Zhang, J. (2021). Catalytic hydrothermal deoxygenation of lipids and fatty acids to diesel-like hydrocarbons: a review. Green Chemistry, 23(3), 1114–1129. https://doi.org/10.1039/D0GC03707A

Yeh, T. M., Hockstad, R. L., Linic, S., & Savage, P. E. (2015). Hydrothermal decarboxylation of unsaturated fatty acids over PtSnx/C catalysts. Fuel, 156, 219–224. https://doi.org/10.1016/J.FUEL.2015.04.039

Zulkepli, S., Juan, J. C., Lee, H. V., Rahman, N. S. A., Show, P. L., & Ng, E. P. (2018). Modified mesoporous HMS supported Ni for deoxygenation of triolein into hydrocarbon-biofuel production. Energy Conversion and Management, 165, 495–508. https://doi.org/10.1016/J.ENCONMAN.2018.03.087

Additional Files

Published

2023-11-17

How to Cite

Hidrogenasi Hidrotermal Katalitik Asam Oleat dengan Produksi Hidrogen secara in-situ Menggunakan Katalis NiO/y-Al2O3. (2023). Jurnal Teknik: Media Pengembangan Ilmu Dan Aplikasi Teknik, 22(2), 114-121. https://doi.org/10.55893/jt.vol22no2.580

Similar Articles

11-20 of 39

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)