Optimisasi Sifat Mekanik Paduan Mg AZ91: Pengaruh Proses Thixoforming dan Homogenisasi terhadap Kekerasan, Kekuatan Tarik, dan Mikrostruktur

Authors

  • Adi Ganda Putra Universitas Jenderal Achmad Yani https://orcid.org/0000-0002-3200-9566
  • Afrianto Sihaloho Universitas Jenderal Acmad Yani
  • Mohamad Vicky Universitas Jenderal Achmad Yani
  • Sony Sukmara Universitas Mathla ul Anwar
  • Pawawoi Universitas Jenderal Achmad Yani

DOI:

https://doi.org/10.55893/jt.vol24no1.680

Keywords:

homogenizing, Mg AZ91 alloy, thixoforming

Abstract

The Mg AZ91 alloy is commonly utilized in the automotive and aerospace sectors due to its excellent strength-to-weight ratio. However, to expand its usability, enhancements in its mechanical properties through specific treatments are required. This study investigates the impact of thixoforming and homogenization on the hardness, tensile strength, and microstructure of the Mg AZ91 alloy. Testing was carried out under four conditions: as-cast, as-cast with homogenization, thixoforming, and thixoforming combined with homogenization. Results revealed that the highest hardness value (108.8 HB) was achieved in the thixoformed and homogenized sample, compared to 65.1 HB in the as-cast condition. The tensile strength also increased significantly from 148.3 MPa to 299.4 MPa, with yield strength rising from 82.6 MPa to 277.2 MPa. Elongation improved slightly from 12.1% to 14.475%. Microstructural analysis showed a transition from coarse dendritic formations in the as-cast condition to a refined, equiaxed structure with uniform alpha and beta phase distribution following thixoforming and homogenization. Although porosity and impurities were present in all samples, they were more effectively managed after homogenization. These findings indicate that combining thixoforming with homogenization effectively enhances the mechanical properties and microstructure of Mg AZ91 alloy, increasing its suitability for high-performance engineering applications.

Author Biographies

  • Adi Ganda Putra, Universitas Jenderal Achmad Yani

    Mechanical Engineering Study Programme, Faculty of Manufacturing Technology

  • Afrianto Sihaloho, Universitas Jenderal Acmad Yani

    Metallurgical Engineering Study Programme, Faculty of Manufacturing Technology

  • Mohamad Vicky, Universitas Jenderal Achmad Yani

    Mechanical Engineering study programme Faculty of Manufacturing Technology

  • Sony Sukmara, Universitas Mathla ul Anwar

    Mechanical Engineering Study Programme Faculty of Technology and Informatics

  • Pawawoi, Universitas Jenderal Achmad Yani

    Metallurgical Engineering Study Programme, Faculty of Manufacturing Technology

References

Abdelgnei, M. A., Omar, M. Z., & Ghazali, M. J. (2019). Wear Properties of Thixoformed Al-5.7Si-2Cu-0.3Mg Aluminium Alloy. Solid State Phenomena, 285, 63–68. https://doi.org/10.4028/www.scientific.net/SSP.285.63

Annamalai, S., Periyakgoundar, S., & Gunasekaran, S. (2019). Magnesium alloys: a review of applications. Materiali in Tehnologije, 53(6), 881–890. https://doi.org/10.17222/mit.2019.065

Atay, H. Y., Aisman, D., Jirkova, H., Behulova, M., & Masek, B. (2020). Use of Thixoforming as a Manufacturing Method for Metallic Composites. Metals and Materials International, 26(9), 1420–1429. https://doi.org/10.1007/s12540-019-00373-5

Barbui, M., Volya, A., Aboud, E., Ahn, S., Bishop, J., Goldberg, V. Z., Hooker, J., Hunt, C. H., Jayatissa, H., Kokalova, Tz., Koshchiy, E., Pirrie, S., Pollacco, E., Roeder, B. T., Saastamoinen, A., Upadhyayula, S., Wheldon, C., & Rogachev, G. V. (2022). a-cluster structure of Ne 18 . Physical Review C, 106(5), 054310. https://doi.org/10.1103/PhysRevC.106.054310

Campo, K. N., & Zoqui, E. J. (2016). Thixoforming of an ECAPed Aluminum A356 Alloy: Microstructure Evolution, Rheological Behavior, and Mechanical Properties. Metallurgical and Materials Transactions A, 47(4), 1792–1802. https://doi.org/10.1007/s11661-016-3339-4

Chalay-Amoly, A., Fatemi, S. M., & Zarei-Hanzaki, A. (2018). MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AN AZ91 MAGNESIUM ALLOY PROCESSED THROUGH BACKWARD EXTRUSION. Archives of Metallurgy and Materials. https://doi.org/10.24425/118922

Chen, Q., Yuan, B., Lin, J., Xia, X., Zhao, Z., & Shu, D. (2014). Comparisons of microstructure, thixoformability and mechanical properties of high performance wrought Magnesium alloys reheated from the as-cast and extruded states. Journal of Alloys and Compounds, 584, 63–75. https://doi.org/10.1016/j.jallcom.2013.08.218

Chokshi, A. H. (2020). Grain Boundary Processes in Strengthening, Weakening, and Superplasticity. Advanced Engineering Materials, 22(1). https://doi.org/10.1002/adem.201900748

Eroshenko, A., Luginin, N., Legostaeva, E., Tolmachev, A., Glukhov, I., Uvarkin, P., Sharkeev, Y., & Schmidt, J. (2022). Effect of severe plastic deformation on structure and mechanical properties of Magnesium alloy Mg–Ca. 020068. https://doi.org/10.1063/5.0085470

G. R., A., & Barik, D. (2021). Roughness in the periodic potential enhances transport in a driven inertial ratchet. Physical Review E, 104(2), 024103. https://doi.org/10.1103/PhysRevE.104.024103

Gupta, M., & Wong, W. L. E. (2015). An Introduction to Lightweight, Energy Saving, Environment Friendly Magnesium Based Nanocomposites: Materials of Upcoming Generation. Advanced Materials Research, 1125, 3–7. https://doi.org/10.4028/www.scientific.net/AMR.1125.3

Huang, M., Zhang, G., Wang, D., Ge, Z., Lu, Y., Jiang, X., & Lou, L. (2019). Dendritic branching patterns in platforms of complex Ni-based single crystal castings. China Foundry, 16(2), 110–117. https://doi.org/10.1007/s41230-019-8080-3

Huang, Z. W., Huang, J., Deng, T. Q., Huang, X. X., Sun, C. J., Xiao, Y. L., Zhang, R. C., Su, Z. Q., & Hua, Z. H. (2013). Globular structure generation and mechanical properties of thixoformed Magnesium alloy. Materials Research Innovations, 17(sup1), 156–161. https://doi.org/10.1179/1432891713Z.000000000237

Husain, N. H., Ahmad, A. H., & Rashidi, M. M. (2017). An overview of thixoforming process. IOP Conference Series: Materials Science and Engineering, 257, 012053. https://doi.org/10.1088/1757-899X/257/1/012053

Jiang, J. F., Liu, Y. Z., Xiao, G. F., & Wang, Y. (2019). Thixoforming of Semisolid Slurry with High Fraction Solid Fabricated by Partial Melting of Commerical Wrought Aluminum Alloys. Solid State Phenomena, 285, 210–218. https://doi.org/10.4028/www.scientific.net/SSP.285.210

Kubasek, J., Vojtech, D., & Dvorsky, D. (2017). The effect of thermo-mechanical processing on the structure, static mechanical properties and fatigue behaviour of pure Mg. Materiali in Tehnologije, 51(2), 289–296. https://doi.org/10.17222/mit.2016.029

Kumar, D., Phanden, R. K., & Thakur, L. (2021). A review on environment friendly and lightweight Magnesium-Based metal matrix composites and alloys. Materials Today: Proceedings, 38, 359–364. https://doi.org/10.1016/j.matpr.2020.07.424

Kusharjanto, K., Soepriyanto, S., Korda, A. A., & Dwiwanto, S. A. (2019). Effect of ZnO Nanoparticles on Grain Refinement of Mg-Al-Zn Alloy by Thixoforming Process. Key Engineering Materials, 811, 170–178. https://doi.org/10.4028/www.scientific.net/KEM.811.170

Lin, Y., Zhu, J., Han, J., Ma, X., & Wang, G. (2020). Effect of strains in grain boundary modification on plasticity and plasticizing mechanism of commercial-purity nickel. Materials Today Communications, 24, 101177. https://doi.org/10.1016/j.mtcomm.2020.101177

Liu, H., Gao, Y., Zhu, Y. M., Wang, Y., & Nie, J. F. (2014). A simulation study of b 1 precipitation on dislocations in an Mg–rare earth alloy. Acta Materialia, 77, 133–150. https://doi.org/10.1016/j.actamat.2014.04.054

M. Kamal, M. R., Bazilah, N. F., Idris, M. H., Salleh, M. S., & W. Ali, W. F. F. (2020). Effect of semi-solid forming temperature and heat treatment on mechanical properties and microstructure of Mg-Al-Zn Alloy (AZ91D) for automotive light application. Journal of Mechanical Engineering and Sciences, 14(4), 7319–7327. https://doi.org/10.15282/jmes.14.4.2020.01.0575

Ng, C. H., Bermingham, M. J., Yuan, L., & Dargusch, M. S. (2022). Towards b-fleck defect free additively manufactured titanium alloys by promoting the columnar to equiaxed transition and grain refinement. Acta Materialia, 224, 117511. https://doi.org/10.1016/j.actamat.2021.117511

Nithin, A. M., Davidson, M. J., & Rao, C. S. P. (2020). Mechanical and Metallurgical Studies on Thixoextruded Al-Si Alloys. Journal of Materials Engineering and Performance, 29(10), 6378–6389. https://doi.org/10.1007/s11665-020-05143-8

Ohno, M., Kudo, M., Kim, G., Yamada, R., Shibuta, Y., & Takaki, T. (2023). Time evolution of interface shape distribution of equiaxed dendrite: A phase-field study. IOP Conference Series: Materials Science and Engineering, 1274(1), 012042. https://doi.org/10.1088/1757-899X/1274/1/012042

Okayasu, M., & Fukui, T. (2021). A study of the mechanical properties of a Mg-Al-Zn alloy (AZ91) produced via Thixomolding. International Journal of Material Forming, 14(2), 271–280. https://doi.org/10.1007/s12289-020-01589-2

Qi, Y. L., Zhao, L., Sun, X., Zong, H. X., Ding, X. D., Jiang, F., Zhang, H. L., Wu, Y. K., He, L., Liu, F., Jin, S. B., Sha, G., & Sun, J. (2021). Enhanced mechanical performance of grain boundary precipitation-hardened high-entropy alloys via a phase transformation at grain boundaries. Journal of Materials Science & Technology, 86, 271–284. https://doi.org/10.1016/j.jmst.2021.01.061

Quan, G.-Z., Kang, B.-S., Ku, T.-W., & Song, W.-J. (2011). Identification for the optimal working parameters of Al–Zn–Mg–Cu alloy with the processing maps based on DMM. The International Journal of Advanced Manufacturing Technology, 56(9–12), 1069–1078. https://doi.org/10.1007/s00170-011-3241-6

SALVETR, P., ŠKOLÁKOVÁ, A., & NOVÁK, P. (2018). Effect of Magnesium addition on the structural homogeneity of NiTi alloy produced by self-propagating high-temperature synthesis. Metallic Materials, 55(06), 379–383. https://doi.org/10.4149/km_2017_6_379

Sarvesha, R., Chalapathi, D., Yadava, M., Jain, J., & Singh, S. S. (2021). In-situ studies on deformation and fracture characteristics of AZ91 Mg alloy. Materialia, 18, 101177. https://doi.org/10.1016/j.mtla.2021.101177

Shastri, H., Mondal, A. K., Dutta, K., Dieringa, H., & Kumar, S. (2020). Microstructural correlation with tensile and creep properties of AZ91 alloy in three casting techniques. Journal of Manufacturing Processes, 57, 566–573. https://doi.org/10.1016/j.jmapro.2020.07.010

Shin, C.-H., Lee, H.-Y., Gyan-Barimah, C., Yu, J.-H., & Yu, J.-S. (2023). Magnesium: properties and rich chemistry for new material synthesis and energy applications. Chemical Society Reviews, 52(6), 2145–2192. https://doi.org/10.1039/D2CS00810F

WANG, L., CHEN, T., JIANG, W., FENG, Y., DONG, W., WANG, Z., LIANG, Z., & ZHU, Y. (2013). Grain coarsening in semi-solid state and tensile mechanical properties of thixoformed AZ91D-RE. Journal of Rare Earths, 31(3), 319–326. https://doi.org/10.1016/S1002-0721(12)60279-8

Xu, Y., Jia, J., Chen, C., Liu, W., Luo, S., Yang, Y., & Hu, L. (2017). Thixoforming of semi-solid AZ91D alloy with high solid fraction prepared by the RUE-based SIMA process. The International Journal of Advanced Manufacturing Technology, 93(9–12), 4317–4328. https://doi.org/10.1007/s00170-017-0874-0

Zhang, S., Chen, T., Zhou, J., Xiu, D., Li, T., & Cheng, K. (2018). Mechanical Properties of Thixoforged In Situ Mg2Sip/AM60B Composite at Elevated Temperatures. Metals, 8(2), 106. https://doi.org/10.3390/met8020106

Zhang, T., Wang, W., Liu, J., Wang, L., Tang, Y., & Wang, K. (2022). A review on Magnesium alloys for biomedical applications. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.953344

Zhao, Z., Chen, Q., Kang, F., & Shu, D. (2009). Microstructural evolution and tensile mechanical properties of thixoformed AZ91D Magnesium alloy with the addition of yttrium. Journal of Alloys and Compounds, 482(1–2), 455–467. https://doi.org/10.1016/j.jallcom.2009.04.059

Zhou, S., Liu, T., Tang, A., Huang, Y., Peng, P., Zhang, J., Hort, N., Willumeit-Romer, R., & Pan, F. (2023). Designing Mg alloys with high strength and ductility by reducing the strength difference between the basal and non-basal slips. Materials & Design, 225, 111476. https://doi.org/10.1016/j.matdes.2022.111476

Zhuang, Y., Wang, H., Li, H., Zheng, L., Li, J., & Zhou, P. (2020). Synergistic Effect of Grain Size, b-Mg17Al12, and Texture on Mechanical Properties of Mg-15Al (wt.%) Magnesium Alloy Processed by Equal Channel Angular Pressing. Journal of Materials Engineering and Performance, 29(7), 4360–4369. https://doi.org/10.1007/s11665-020-04991-8

Additional Files

Published

2025-06-02

How to Cite

Optimisasi Sifat Mekanik Paduan Mg AZ91: Pengaruh Proses Thixoforming dan Homogenisasi terhadap Kekerasan, Kekuatan Tarik, dan Mikrostruktur. (2025). Jurnal Teknik: Media Pengembangan Ilmu Dan Aplikasi Teknik, 24(1), 51-57. https://doi.org/10.55893/jt.vol24no1.680

Similar Articles

You may also start an advanced similarity search for this article.