Review: Potensi Pemanfaatan Sampah Plastik dan Biomassa melalui Proses Pirolisis sebagai Solusi Energi Alternatif dan Pengelolaan Sampah

Authors

  • Lutfi Firmansyah Universitas Jenderal Achmad Yani
  • Zahrul Mufrodi Universitas Ahmad Dahlan
  • Maryudi Universitas Ahmad Dahlan

DOI:

https://doi.org/10.55893/jt.vol24no2.723

Keywords:

Pyrolysis, Waste, Biomass, Plastic

Abstract

Dependence on the use of fossil fuels has caused problems in various aspects, such as increasing greenhouse gas emissions and the depletion of non-renewable energy sources. On the other hand, the issue of waste, particularly plastic and biomass waste, has become a global challenge. This article discusses the potential of converting mixed plastic and biomass waste into alternative fuel through the pyrolysis process. Pyrolysis provides a dual solution: reducing waste accumulation while simultaneously producing economically valuable alternative energy such as bio-oil, biochar, and syngas. In implementing the pyrolysis process, several factors, such as operating temperature, type of catalyst, and reactor technology, significantly influence the pyrolysis outcomes. It is expected that a deep understanding of the parameters will enrich knowledge and support the development of the pyrolysis process. By selecting the appropriate technology, pyrolysis can be a viable solution to address the energy crisis and global environmental issues.

Author Biography

  • Lutfi Firmansyah, Universitas Jenderal Achmad Yani

    Teknik Kimia

References

Abadi, M. S. A., Van Geem, K. M., Fathi, M., Bazgir, H., and Ghadiri, M. (2021). The pyrolysis of oak with polyethylene, polypropylene and polystyrene using fixed bed and stirred reactors and TGA instrument. Energy, 232, 121085. https://doi.org/10.1016/j.energy.2021.121085

Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., and Watson, I. (2017). Biomass conversion technologies. In Greenhouse gas balances of bioenergy systems. Elsevier Inc. https://doi.org/10.1016/B978-0-08-101036-5.00008-2

Adoga, S., Igbum, O. G., Okopi, G., Ikyenge, B. A., Ochi, O. I., and Ode, P. (2022). Catalytic pyrolysis of low density polyethylene and polypropylene wastes to fuel oils by N-clay. Ovidius University Annals of Chemistry, 33(1), 50-55. https://doi.org/10.2478/auoc-2022-0007

Aylon, E., Fernandez-Colino, A., Navarro, M. V., Murillo, R., Garcia, T., and Mastral, A. M. (2008). Waste tire pyrolysis: Comparison between fixed bed reactor and moving bed reactor. Industrial and Engineering Chemistry Research, 47(12), 4029-4033. https://doi.org/10.1021/ie071573o

Berrueco, E., Mastral, F. J., Ceamanos, J., and Garcia-Bacaicoa, P. (2005). Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: Analysis of the gases obtained. Journal of Analytical and Applied Pyrolysis, 74(1-2), 245-253. https://doi.org/10.1016/j.jaap.2004.10.007

Burra, K. G., and Gupta, A. K. (2018). Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes. Applied Energy, 220, 408-418. https://doi.org/10.1016/j.apenergy.2018.03.117

Chen, W., Shi, S., Zhang, J., Chen, M., and Zhou, X. (2016). Co-pyrolysis of waste newspaper with high-density polyethylene: Synergistic effect and oil characterization. Energy Conversion and Management, 112, 41-48. https://doi.org/10.1016/j.enconman.2016.01.005

Chen, D. E. W., and Koenig, L. R. (1988). Fluidized-bed upgrading of wood pyrolysis liquids and related compounds. ACS Symposium Series, 376, 277-289. https://doi.org/10.1021/bk-1988-0376.ch024

Engels, H. W., Pirkl, H. G., Albers, R., Albach, R. W., Krause, J., Hoffmann, A., Casselmann, H., and Dormish, J. (2013). Polyurethanes: Versatile materials and sustainable problem solvers for todays challenges. Angewandte Chemie International Edition, 52(36), 9422-9441. https://doi.org/10.1002/anie.201302766

Fu, P., Bai, X., Li, Z., Yi, W., Li, Y., and Zhang, Y. (2018). Fast pyrolysis of corn stovers with ceramic ball heat carriers in a novel dual concentric rotary cylinder reactor. Bioresource Technology, 263, 467-474. https://doi.org/10.1016/j.biortech.2018.05.033

Hassan, H., Lim, J. K., and Hameed, B. H. (2019). Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite. Bioresource Technology, 284, 406-414. https://doi.org/10.1016/j.biortech.2019.03.137

Hazman, N., Mat Isa, N., Nasir, N. F., Hussein, M., and A. D. S. (2024). The proximate and ultimate composition of pulverised coconut shell. International Journal of Integrated Engineering, 16(2), 270-277. https://doi.org/10.30880/ijie.2024.16.02.028

Maddah, H. A. (2016). Polypropylene as a promising plastic: A review. American Journal of Polymer Science, 6(1), 1-11. https://doi.org/10.5923/j.ajps.20160601.01

Institute for Essential Service Reform. (2023). Transisi berkeadilan di daerah penghasil batu bara di Indonesia. https://iesr.or.id/agenda-iesr/peluncuran-studi-transisi-berkeadilan-di-daerah-penghasil-batu-bara-di-indonesia-studi-kasus-kab-muara-enim-dan-kab-paser/

Kaniapan, S., Suhaimi, H., Hamdan, Y., and Pasupuleti, J. (2021). Experiment analysis on the characteristic of empty fruit bunch, palm kernel shell, coconut shell, and rice husk for biomass boiler fuel. Journal of Mechanical Engineering and Sciences, 15(3), 8300-8309. https://doi.org/10.15282/jmes.15.3.2021.08.0652

Kasar, P., and Ahmaruzzaman, M. (2021). Correlative HHV prediction from proximate and ultimate analysis of char obtained from co-cracking of residual fuel oil with plastics. Korean Journal of Chemical Engineering, 38(7), 1370-1380. https://doi.org/10.1007/s11814-021-0790-8

Kausar, A. (2018). A review of filled and pristine polycarbonate blends and their applications. Journal of Plastic Film and Sheeting, 34(1), 60-97. https://doi.org/10.1177/8756087917691088

Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia. (2023). Komposisi sampah nasional 2023. https://sipsn.menlhk.go.id/sipsn/public/data/komposisi

King, S. B. (2015). Lessons from China. JACC Cardiovascular Interventions, 8(14), 1911-1912. https://doi.org/10.1016/j.jcin.2015.09.007

Lameh, M., Abbas, A., Azizi, F., and Zeaiter, J. (2021). A simulation-based analysis for the performance of thermal solar energy for pyrolysis applications. International Journal of Energy Research, 45(10), 15022-15035. https://doi.org/10.1002/er.6781

Lynwood, C. (2019). Polystyrene: synthesis, characteristics and applications. Sustainability (Switzerland), 11(1). Nova Science Publishers, Inc.

Masek, O., Brownsort, P., Cross, A., and Sohi, S. (2013). Influence of production conditions on the yield and environmental stability of biochar. Fuel, 103, 151-155. https://doi.org/10.1016/j.fuel.2011.08.044

Mathew, M., and Muruganandam, L. (2017). Pyrolysis of agricultural biomass using an auger reactor: A parametric optimization. International Journal of Chemical Reactor Engineering, 15(3). https://doi.org/10.1515/ijcre-2016-0133

Mnyango, J. I., and Hlangothi, S. P. (2024). Polyvinyl chloride applications along with methods for managing its end-of-life items: A review. Progress in Rubber, Plastics and Recycling Technology, 40, 1-59. https://doi.org/10.1177/14777606241308652

Moriarty, P., and Honnery, D. (2012). What is the global potential for renewable energy? Renewable and Sustainable Energy Reviews, 16(1), 244-252. https://doi.org/10.1016/j.rser.2011.07.151

Motasemi, F., and Afzal, M. T. (2013). A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews, 28, 317-330. https://doi.org/10.1016/j.rser.2013.08.008

Muneer, B., Zeeshan, M., Qaisar, S., Razzaq, M., and Iftikhar, H. (2019). Influence of in-situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality. Journal of Cleaner Production, 237, 117762. https://doi.org/10.1016/j.jclepro.2019.117762

Nayak, P., and Datta, A. (2022). An entropy-based TOPSIS approach for selecting best suitable biomass. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02824-3

Nistico, R. (2020). Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing, 90, 106707. https://doi.org/10.1016/j.polymertesting.2020.106707

Olam, M., and Karaca, H. (2022). Characterization of products obtained of waste polyethylene terephthalate by pyrolysis. Environmental Progress and Sustainable Energy, 41(4). https://doi.org/10.1002/ep.13835

Olivera, S., Muralidhara, H. B., Venkatesh, K., Gopalakrishna, K., and Vivek, C. S. (2016). Plating on acrylonitrile-butadiene-styrene (ABS) plastic: A review. Journal of Materials Science, 51(8), 3657-3674. https://doi.org/10.1007/s10853-015-9668-7

Othman, B. N., and Yunus, M. (2008). Determination of physical and chemical characteristics of electronic plastic waste resin using proximate and ultimate analysis method. ICCBT, 16, 169-180.

Pattanayak, S., Hauchhum, L., Loha, C., and Sailo, L. (2020). Selection criteria of appropriate bamboo based biomass for thermochemical conversion process. Biomass Conversion and Biorefinery, 10(2), 401-407. https://doi.org/10.1007/s13399-019-00421-5

Pinto, F., Miranda, M., and Costa, P. (2016). Production of liquid hydrocarbons from rice crop wastes mixtures by co-pyrolysis and co-hydropyrolysis. Fuel, 174, 153-163. https://doi.org/10.1016/j.fuel.2016.01.075

Prabhakara, M., Bramer, E. A., and Brem, G. (2021). Role of dolomite as an in-situ CO2 sorbent and deoxygenation catalyst in fast pyrolysis of beechwood in a bench scale fluidized bed reactor. Fuel Processing Technology, 224, 107029. https://doi.org/10.1016/j.fuproc.2021.107029

Quan, C., Gao, N., and Song, Q. (2016). Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization. Journal of Analytical and Applied Pyrolysis, 121, 84-92. https://doi.org/10.1016/j.jaap.2016.07.005

Qureshi, K. M., Kay Lup, A. N., Khan, S., Abnisa, F., and Wan Daud, W. M. A. (2018). A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil. Journal of Analytical and Applied Pyrolysis, 131, 52-75. https://doi.org/10.1016/j.jaap.2018.02.010

Salakhov, I. I., Shaidullin, N. M., Chalykh, A. E., Matsko, M. A., Shapagin, A. V., Batyrshin, A. Z., Shandryuk, G. A., and Nifantev, I. E. (2021). Low-temperature mechanical properties of high-density and low-density polyethylene and their blends. Polymers, 13(11), 1821. https://doi.org/10.3390/polym13111821

Selvaganapathy, M., Muthuvelayudham, R., and Jayakumar, M. (2019). Process parameter optimization study on thermolytic polystyrene liquid fuel using response surface methodology. Materials Today Proceedings, 26, 2729-2739. https://doi.org/10.1016/j.matpr.2020.02.572

Stancin, H., Mikulcic, H., Manic, N., Stojiljkovic, D., Vujanovic, M., Wang, X., and Duic, N. (2021). Thermogravimetric and kinetic analysis of biomass and polyurethane foam mixtures co-pyrolysis. Energy, 237, 121592. https://doi.org/10.1016/j.energy.2021.121592

Suhaj, P., Husar, J., and Haydary, J. (2020). Gasification of RDF and its components with tire pyrolysis char as tar-cracking catalyst. Sustainability (Switzerland), 12(16), 6647. https://doi.org/10.3390/su12166647

Suhartono, Harsanti, M., Septiyanti, W., Suharto, and Achmad, F. (2022). Zeolite catalytic pyrolysis of waste tire into fuel in gasoline hydrocarbon range. IOP Conference Series Earth and Environmental Science, 969(1), 012030. https://doi.org/10.1088/1755-1315/969/1/012030

Suhartono, Romli, A., Prabowo, B. H., Kusumo, P., and Suharto. (2023). Converting styrofoam waste into fuel using a sequential pyrolysis reactor and natural zeolite catalytic reformer. International Journal of Technology, 14(1), 185-194. https://doi.org/10.14716/ijtech.v14i1.4907

Uzoejinwa, B. B., He, X., Wang, S., Abomohra, A. E. F., Hu, Y., and Wang, Q. (2018). Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Conversion and Management, 163, 468-492. https://doi.org/10.1016/j.enconman.2018.02.004

Varma, A. K., Thakur, L. S., Shankar, R., and Mondal, P. (2019). Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products. Waste Management, 89, 224-235. https://doi.org/10.1016/j.wasman.2019.04.016

Williams, A., Jones, J. M., Ma, L., and Pourkashanian, M. (2012). Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science, 38(2), 113-137. https://doi.org/10.1016/j.pecs.2011.10.001

Wilson, D., Rodic, L., Modak, P., Soss, R., Rogero, A., Velis, C., Iyer, M., and Simonett, O. (2022). Global waste management outlook.

Wright, V. P. (2024). World energy outlook. International Energy Agency.

Yang, L., Cui, C., Liu, S., Qiu, Q., Ding, Y., Wu, Y., and Zhang, B. (2016). Catalytic hydroprocessing of microalgae-derived biofuels: A review. Green Chemistry, 18(13), 3684-3699. https://doi.org/10.1039/c6gc01239f

Zhang, B., Zhong, Z., Min, M., Ding, K., Xie, Q., and Ruan, R. (2015). Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study. Bioresource Technology, 189, 30-35. https://doi.org/10.1016/j.biortech.2015.03.092

Zhang, Y. T. C., Vispute, T. P., Xiao, R., and Huber, G. W. (2011). Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: The hydrogen to carbon effective ratio. Energy and Environmental Science, 4(6), 2297-2307. https://doi.org/10.1039/c1ee01230d

Zhang, Y., Zhao, Y., Wang, D., Yan, M., Zhang, J., Zhang, P., Ding, T., Chen, L., and Chen, C. (2021). Current technologies for plastic waste treatment: A review. Journal of Cleaner Production, 282, 124523. https://doi.org/10.1016/j.jclepro.2020.124523

Additional Files

Published

2025-12-29

How to Cite

Review: Potensi Pemanfaatan Sampah Plastik dan Biomassa melalui Proses Pirolisis sebagai Solusi Energi Alternatif dan Pengelolaan Sampah. (2025). Jurnal Teknik: Media Pengembangan Ilmu Dan Aplikasi Teknik, 24(2), 126-136. https://doi.org/10.55893/jt.vol24no2.723

Similar Articles

You may also start an advanced similarity search for this article.