Karakteristik Termal Material Komposit Berbahan Dasar Polipropilena dan Batang Pisang
DOI:
https://doi.org/10.55893/jt.vol23no1.554Keywords:
thermal insulation material , composite, banana stem, polypropylene, recycled polypropyleneAbstract
Thermal insulation in a residence can help keep the room's temperature stable, allowing maximum comfort at work and relaxation. Because of its low thermal conductivity value of 0.1166 W/mK, banana stem fiber (BP) is an environmentally friendly thermal insulation material, while the matrix uses polypropylene (PP). Because excessive polypropylene production can pollute the environment, recycled polypropylene (PPDU) should be investigated as a candidate matrix. This study employs compression molding at a pressure of 8 MPa and a temperature of 170 °C for 60 minutes, with volume fractions of banana stem fibers varying by 10%, 30%, and 50%, as well as different matrix types, namely PP and PPDU. The manufacturing results were then evaluated using density and thermal conductivity tests. The density testing results for BP/PP and BP/PPDU decreased as more volume fractions were added. This phenomenon can occur as a result of void formation during the manufacturing process. Furthermore, the thermal conductivity values for BP/PP increased from 0.37 to 0.89 W/mK and from 0.58 to 0.94 W/mK for BP/PPDU, respectively. The lower the thermal conductivity value, the smaller the volume fraction of fiber. Similarly, pure PP is preferable because it has lower conductivity values than PPDU.
References
Achilias, D., Antonakou, E., Roupakias, C., Megalokonomos, G.P., & Lappas, A. (2008). RECYCLING TECHNIQUES OF POLYOLEFINS FROM PLASTIC WASTES. Global WASTES. Global NEST Journal, 10(1). 114-122.
Adha, D. K. Z. A., & Mora, M. (2023). Sifat Fisis dan Mekanis Papan Partikel Serbuk Batang Pisang dan Kulit Buah Kakao Bertulang Ayaman Lidi Kelapa. Jurnal Fisika Unand, 12(2), 291–297. https://doi.org/10.25077/JFU.12.2.290-296.2023
Annie Paul, S., Boudenne, A., Ibos, L., Candau, Y., Joseph, K., & Thomas, S. (2008). Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Composites Part A: Applied Science and Manufacturing, 39(9), 1582–1588. https://doi.org/10.1016/J.COMPOSITESA.2008.06.004
Assis, F. S., Margem, F. M., Cordeiro, T. C., Figueiredo, A. B. H., Braga, F. O., & Monteiro, S. N. (2015). Photoacoustic Thermal Characterization of Banana Fibers. Materials Research, 18, 240–245. https://doi.org/10.1590/1516-1439.368914
ASTM D7984-16. (t.t.). Standard Test Method for Measurement of Thermal Effusivity of Fabrics Using a Modified Transient Plane Source (MTPS) Instrument 1. https://doi.org/10.1520/D7984-16
Berber, N. (2020). INDUSTRIAL TRIAL to PRODUCE of ENVIRONMENTALLY FRIENDLY INSULATION MATERIAL with INORGANIC RESIN. Fresenius Environmental Bulletin, 29(1).
Bustomi, F., & Ghofur, A. (2021). UJI KONDUKTIVITAS TERMAL KOMPOSIT POLIESTER FILLER SERBUK KAYU ULIN (EUSIDEROXYLON ZWAGERI). JTAM ROTARY, 3(2), 233–244. https://doi.org/10.20527/JTAM_ROTARY.V3I2.4367
Cirplus. (t.t.). Procure Recycled PP via Cirplus Online Platform | CIRPLUS.COM. Diambil 29 April 2024, dari https://www.cirplus.com/materials/R-PP
Hasanah, U., & Muslimin, M. (2020). Pengaruh Tekanan Compression Moulding terhadap Kinerja Pelat Bipolar Komposit Grafit/Resin Epoksi Komposisi 20% Karbon Tempurung Kelapa. Jurnal Mekanik Terapan, 1(1), 71–80. https://doi.org/10.32722/jmt.v1i1.3335
Hernández-Sánchez, F., & Herrera-Franco, P. J. (2001). Electrical and thermal properties of recycled polypropylene-carbon black composites. Polymer Bulletin, 45(6). https://doi.org/10.1007/s002890170105
Irnawan, D., Hendarti, L., & Primantari, L. (2022). Kajian Pemanfaatan Limbah Jerami yang Berpotensi sebagai Wet Covering Beton. Jurnal Ilmiah Rekayasa Sipil, 19(2), 136–144. https://doi.org/10.30630/JIRS.V19I2.886
Maier, C., & Calafut, T. (1998). Polypropylene Chemistry. Dalam Polypropylene The Definitive User’s Guide and Databook (First ed.). William Andrew. http://www.sciencedirect.com:5070/book/9781884207587/polypropylene
Manohar, K. (2016). A Comparison of Banana Fiber Insulation with Biodegradable Fibrous Thermal Insulation. American Journal of Engineering Research (AJER), 5, 249–255. www.ajer.org
Masturi, M., Mikrajuddin, M., & Khairurrijal, K. (2012). Efektivitas Polyvinyl Acetate (PVAc) Sebagai Matriks Pada Komposit Sampah. BERKALA FISIKA, 13(2), 61–66. https://doi.org/10.2/JQUERY.MIN.JS
Mirmanto, M., Sugiman, S., Ramadhani, M. D., & Fathurrahman, F. (2021). Variasi persen berat tempurung kelapa terhadap konduktivitas termal komposit silicone rubber. Dinamika Teknik Mesin, 11(2), 107–115. https://doi.org/10.29303/dtm.v11i2.450
Muthukumar, K., Sabariraj, R. V., Dinesh Kumar, S., & Sathish, T. (2020). Investigation of thermal conductivity and thermal resistance analysis on different combination of natural fiber composites of Banana, Pineapple and Jute. Materials Today: Proceedings, 21. https://doi.org/10.1016/j.matpr.2019.09.140
Nath, S., Jena, H., Priyanka, & Sahini, D. (2019). Analysis of Mechanical Properties of Jute Epoxy Composite with Cenosphere Filler. Silicon, 11(2), 659–671. https://doi.org/10.1007/S12633-018-9941-X/METRICS
OKTIOLA, A. T. S., & FAUZIAH, Q. (2021). Pra Rancangan Pabrik Propilen Glikol Dari Propilen Oksida Dan Air Dengan Kapasitas 40.000 Ton/Tahun. https://dspace.uii.ac.id/handle/123456789/37177
P, N., C Subramanian, S., & K R, R. (2023). Pineapple Fiber Reinforced Epoxy Composite for Thermal Insulation Application. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4507269
Pavel, C., & Blagoeva, D. (2018). Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings – Revised edition. Publications Office. https://doi.org/doi/10.2760/750646
Pratama, R. (2019). Efek Rumah Kaca Terhadap Bumi. Buletin Utama Teknik, 14(2).
Pujari, S., Venkatesh, T., & Seeli, H. (2017). Experimental investigations on thermal conductivity of fenugreek and banana composites. Journal of The Institution of Engineers (India): Series D, 99(1), 51–55. https://doi.org/10.1007/S40033-017-0146-Z/METRICS
Rosmayanti, D. (2019). Analisis Performansi Air Conditioning 1 PK Dengan 3 Fluida Kerja. Teknobiz: Jurnal Ilmiah Program Studi Magister Teknik Mesin, 9(3).
Setiajit, S. B., Sukanto, H., & Raharjo, W. W. (2016). Pengaruh waktu pengepresan terhadap sifat mekanik komposit kenaf / polypropylene. Jurnal Teknik Mesin Indonesia, 11(2), 89-93. https://doi.org/10.36289/JTMI.V11I2.60
Siau, J. F. (1995). Wood: Influence of Moisture on Physical Properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, 143-188. https://search.worldcat.org/title/807261164
Subagyo, A., & Chafidz, A. (2018). Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications. Banana Nutrition - Function and Processing Kinetics. https://doi.org/10.5772/INTECHOPEN.82204
Subramanya, R., Sathyanarayana, P., Kn, M., & Naik, S. (2022). The manufacture and characterisation of short banana fibre-reinforced polymer composites. Advances in Materials and Processing Technologies, 8(1), 797–807. https://doi.org/10.1080/2374068X.2020.1833403
Wang, W., Zeng, Y., Wang, W., & Zeng, Y. (2020). Polypropylene - Polymerization and Characterization of Mechanical and Thermal Properties. Polypropylene - Polymerization and Characterization of Mechanical and Thermal Properties. https://doi.org/10.5772/INTECHOPEN.73995
Yunianto, B. (2020). Uji Prestasi Pemanas Air Tenaga Matahari Jenis Tabung dengan Variasi Arah Kolektor Terhadap Datangnya Sinar Matahari. Rotasi: Jurnal Teknik Mesin Universitas Diponegoro, 22(2).
Zulfikar, M., Setiawan, F., & Wicaksono, D. (2023). PERBANDINGAN METODE VACUUM INFUSION & VACUUM BAGGING PADA KOMPOSIT BERPENGUAT FIBER KARBON KEVLAR. Teknika STTKD: Jurnal Teknik, Elektronik, Engine, 9(1). https://doi.org/10.56521/teknika.v9i1.860
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Gusti Umindya Nur Tajalla, Prisky Andriansyah, Ilham Tri Riyadi, Mei Lisa Nur Vadila, Andromeda Dwi Laksono
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Penulis yang menyerahkan artikel di Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik untuk keperluan publikasi telah mengetahui bahwa Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik memberikan akses terbuka terhadap konten untuk mendukung pertukaran informasi mengenai ilmu pengetahuan, sesuai dengan penerbitan daring yang berbasis Open Access Journal dan mengikuti Creative Commons Attribution 4.0 International License. Sehingga penulis setuju dengan ketentuan-ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak publikasi pertama kepada pihak jurnal dengan pekerjaan secara bersamaan
di bawah Creative Commons Attribution 4.0 International License yang memungkinkan orang lain untuk berbagi pekerjaan
dengan pengakuan kepengarangan karya dan publikasi pertama artikel tersebut di Jurnal Teknik: Media Pengembangan dan
Aplikasi Teknik.
2. Penulis dapat melakukan perjanjian tambahan untuk hak distribusi non-eksklusif artikel yang telah diterbitkan di jurnal ini
(misalnya, posting ke sebuah repositori institusi atau menerbitkannya dalam sebuah buku), dengan mengakui bahwa
publikasi pertama dilakukan di Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik.
3. Penulis diizinkan dan didorong untuk menyebarkan karya mereka secara daring (misalnya, dalam repositori institusi atau
laman web penulis) setelah artikel terbit (proses penerbitan artikel selesai). Hal ini terkait dengan imbas dari pertukaran
informasi yang produktif (Lihat Pengaruh Open Access).