Effect of Alloy Elements and Compounds on Characteristics of Magnesium Alloys and Their Applications - Study
DOI:
https://doi.org/10.26874/jt.vol20no2.424Keywords:
Magnesium Alloys, Alloying elements, Grain refinement, Mechanical propertiesAbstract
Alloys based on Magnesium the lightest structural metal and Mg have great application potential in the automotive and aerospace industries. However, Magnesium in its application is limited by its low strength and ductility. The most effective way to increase strength and ductility is by adding alloying elements, grain refinement, and dispersion strengthening. However, universal strengthening techniques for magnesium alloys are still being researched, and some are still being debated. This paper presents a brief overview of the development of methods of adding alloying elements to magnesium alloys, contributing to a better understanding of the factors controlling mechanical properties and providing an outlook for future research in this area.
References
Aghion, E., & Bronfin, B. (2004). Magnesium Alloys: Science, Technology and Applications. January.
Al-tib, W., Additions, Z., & Lee, K. (2011). a Study on Grain Refinement of AZ91E Magnesium Alloy.
Antipas, G. (2013). The Effect of Increasing Sn Content on High-Temperature Mechanical Deformation of an Mg-3%Cu-1%Ca Alloy. Metals. https://doi.org/10.3390/met3040337
Asano, K., & Yoneda, H. (2008). High Temperature Properties of AZ91D Magnesium Alloy Composite Reinforced with Short Alumina Fiber and Mg2Si Particle. Materials Transactions, 49(7), 1688–1693. https://doi.org/10.2320/matertrans.MER2008092
ASM International. (1992). ASM Metals Handbook Vol.2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials.
Azad, A. (2012). Grain refinemnet of magnesium alloy AZ91E. April, 101.
Balasubramani, N. (2009). STUDIES ON GRAIN REFINEMENT AND ALLOYING ADDITIONS ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg-8Zn-4AI ALLOY.
Baldwin, W. (2004). ASM Handbook : Metallography and Microstructures. 9.
CAI, H., GUO, F., REN, X., SU, J., & CHEN, B. (2016). Effects of cerium on as-cast microstructure of AZ91 magnesium alloy under different solidification rates. Journal of Rare Earths, 34(7), 736–741. https://doi.org/10.1016/S1002-0721(16)60085-6
Carpenter, J. A., Jackman, J., Li, N., Osborne, R. J., Powell, B. R., & Sklad, P. (n.d.). Automotive Mg Research and Development in North America. http://www.scientific.net
Chen, T. J., Jiang, X. D., Ma, Y., Wang, R. Q., & Hao, Y. (2011). Grain refinement of AZ91D magnesium alloy by MgCO3. Materials Research, 14(1), 124–133. https://doi.org/10.1590/S1516-14392011005000017
Chen, T. J., Wang, R. Q., Huang, H. J., Ma, Y., & Hao, Y. (2012). Grain refining technique of AM60B magnesium alloy by MgCO 3. Transactions of Nonferrous Metals Society of China (English Edition), 22(7), 1533–1539. https://doi.org/10.1016/S1003-6326(11)61352-6
De Cicco, M., Konishi, H., Cao, G., Choi, H. S., Turng, L. S., Perepezko, J. H., Kou, S., Lakes, R., & Li, X. (2009). Strong, ductile magnesium-zinc nanocomposites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 40(12), 3038–3045. https://doi.org/10.1007/s11661-009-0013-0
Distribution, F. O. R. (n.d.). A NORTH AMERICAN AUTOMOTIVE STRATEGIC VISION FOR MAGNESIUM M A G N E S I U M V I S I O N 2 0 2 0 :
Esmaily, M., Svensson, J. E., Fajardo, S., Birbilis, N., Frankel, G. S., Virtanen, S., Arrabal, R., Thomas, S., & Johansson, L. G. (2017). Fundamentals and advances in magnesium alloy corrosion. In Progress in Materials Science. https://doi.org/10.1016/j.pmatsci.2017.04.011
Fu, H. M., Qiu, D., Zhang, M. X., Wang, H., Kelly, P. M., & Taylor, J. A. (2008). The development of a new grain refiner for magnesium alloys using the edge-to-edge model. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2007.02.076
James, M., Kihiu, J. M., Rading, G. O., & Kimotho, J. K. (2011). Use of magnesium alloys in optimizing the weight of automobile: Current trends and opportunities. Sustainable Research and Innovation Conference Proceedings, 3, 4–6.
Jiang, B., Qiu, D., Zhang, M. X., Ding, P. D., & Gao, L. (2010). A new approach to grain refinement of an Mg-Li-Al cast alloy. Journal of Alloys and Compounds, 492(1–2), 95–98. https://doi.org/10.1016/j.jallcom.2009.11.066
Jiang, Z., Jiang, B., Yang, H., Yang, Q., & Dai, J. (2015). In fl uence of the Al 2 Ca phase on microstructure and mechanical properties of Mg e Al e Ca alloys. 647, 357–363. https://doi.org/10.1016/j.jallcom.2015.06.060
Jiang, Z., Jiang, B., Zhang, J., Xia, X., & Pan, F. (2015). Microstructural Evolution of Mg-4Al-2 . 5Ca Alloy during Solidification. 816, 486–491. https://doi.org/10.4028/www.scientific.net/MSF.816.486
Jun, J. H., Park, B. K., Kim, J. M., Kim, K. T., & Jung, W. J. (2005). Effects of Ca addition on microstructure and mechanical properties of Mg-RE-Zn casting alloy. Magnesium - Science, Technology and Applications, 488–489, 107–110. https://doi.org/10.4028/www.scientific.net/MSF.488-489.107
Kainer, K. U. (2007). Magnesium : proceedings of the 7th International Conference Magnesium Alloys and their Applications. Wiley-VCH.
Kardys, G. (2017a). Magnesium Car Parts : A Far Reach for Manufacturers? Part 1.
Kardys, G. (2017b). Magnesium Car Parts: Cost Factors (Part 2).
Kawamura, Y. (2010). Not journal Article Japan Technology : Ultralight Magnesium Alloy. 28–29.
Kojima, Y. (2001). Project of platform science and technology for advanced magnesium alloys. In Materials Transactions (Vol. 42, Issue 7, pp. 1154–1159).
Krisnawan, A. U. (2009). Karakterisasi Sampel Paduan Magnesium AZ91D dengan berbagai Variasi waktu Milling Menggunakan XRF dan XRD.
Lee, Y. C., Dahle, A. K., & Stjohn, D. H. (2000). The role of solute in grain refinement of magnesium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 31(11), 2895–2906. https://doi.org/10.1007/BF02830349
Liu, S. F., Li, B., Wang, X. H., Su, W., & Han, H. (2009). Refinement effect of cerium, calcium and strontium in AZ91 magnesium alloy. Journal of Materials Processing Technology, 209(8), 3999–4004. https://doi.org/10.1016/j.jmatprotec.2008.09.020
Lv, B., Peng, J., Peng, Y., & Tang, A. (2013). The effect of addition of Nd and Ce on the microstructure and mechanical properties of ZM21 Mg alloy. Journal of Magnesium and Alloys, 1(1), 94–100. https://doi.org/10.1016/j.jma.2013.02.011
Mayer Kuts. (2006). Material and Mechanical Design “Mechanical Engineer’s Handbook.†John Willey & Sons, Inc.
Mordike, B. L., & Ebert, T. (2001). Magnesium Properties - applications - potential. Materials Science and Engineering A, 302(1), 37–45. https://doi.org/10.1016/S0921-5093(00)01351-4
Motegi, T. (2005). Grain-refining mechanisms of superheat-treatment of and carbon addition to Mg – Al – Zn alloys. 414, 408–411. https://doi.org/10.1016/j.msea.2005.08.214
Nie, K., Kang, X., Deng, K., Wang, T., & Guo, Y. (2018). Effect of SiC Nanoparticles on Hot Deformation Behavior and Processing Maps of Magnesium Alloy AZ91. https://doi.org/10.3390/nano8020082
Ning, Z., Cao, P., Wang, H., Sun, J., & Liu, D. (2007). Effect of Cooling Conditions on Grain Size of AZ91 Alloy. J. Mater. Sci. Technol, 23(5).
Ninomiya, R., Ojiro, T., Kubota, K., & Mining, M. (1995). IMPROVED HEAT RESISTANCE OF Mg-A1 ALLOYS BY THE Ca ADDITION Mg-3A1 Mg-3A1 Mg-6A1 Mg-6A1 Mg-9A1 Mg-9A1. 43(2).
Nordlien, J. H., Ono, S., Masuko, N., & Nisancioglu, K. (1997). A tem investigation of naturally formed oxide films on pure magnesium. Corrosion Science, 39(8), 1397–1414. https://doi.org/10.1016/S0010-938X(97)00037-1
Pan., Y., Liu., X. and Yang, H. (2007). Sr Microalloying for Refining Grain Size of AZ91D Magnesium Alloy. Journal of Wuhan University of Technology-Materials Science, Edition 22, pp 74-76.
Pan, Y., Liu, X., & Yang, H. (2005). Role of C and Fe in Grain Refinement of an AZ63B Magnesium Alloy by Al-C Master Alloy. J. Mater. Sci. Technol, 21(6).
Qian, M., Stjohn, D. H., & Frost, M. T. (2003). Zirconium Alloying and Grain Refinement of Magnesium alloys. Magnesium Technology 2003, October, 209–214. https://drive.google.com/open?id=0B0fTxDBXtHZMWmRPVlg1WVJLODQ
Qingchun, X., Jing, Z., Haicheng, P., Lina, H., & Rongde, L. (2011). Effects of scandium and zirconium combination alloying on as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy. In China Foundry (Vol. 8, Issue 1, pp. 137–140).
Qudong, W., Wenzhou, C., Xiaoqin, Z., & Yizhen, L. U. (2001). Effects of Ca addition on the microstructure and mechanical properties of AZ91magnesium alloy. 6, 3035–3040.
Ramachandran, T. R., Sharma, P. K., & Balasubramanian, K. (2008). Grain refinement of light alloys. 68th World Foundry Congress, 189–193. http://www.scopus.com/inward/record.url?eid=2-s2.0-79957972949&partnerID=tZOtx3y1
Rokhlin, L. L., Dobatkina, T. V., Nikitina, N. I., & Tarytina, I. E. (2009). Calcium-alloyed magnesium alloys. Metal Science and Heat Treatment, 51(3–4), 164–169. https://doi.org/10.1007/s11041-009-9127-7
Rokhlin, L. L., Nikitina, N. I., & Volchenkova, V. A. (2006). Magnesium-rich Mg-Al2Ca alloys. Russian Metallurgy (Metally), 2006(2), 185–188. https://doi.org/10.1134/S0036029506020157
Rzychoń, T., & Kiełbus, a. (2006). Effect of rare earth elements on the microstructure of Mg-Al alloys. Manufacturing Engineering, 17(1), 149–152.
Saha, P., & Dissertation, A. (2010). AN ANALYSIS OF THE GRAIN REFINEMENT OF MAGNESIUM BY ZIRCONIUM.
Song, C., Han, Q., & Zhai, Q. (2009). Review of grain refinement methods for as-cast microstructure of magnesium alloy. In China Foundry (Vol. 6, Issue 2, pp. 93–103).
Song, G.-L. (2011). Corrosion electrochemistry of magnesium (Mg) and its alloys. In Corrosion of Magnesium Alloys. Woodhead Publishing Limited. https://doi.org/10.1533/9780857091413.1.3
Tushadi. (1990). Analisa Penyebaran dolomit di Indonesia.
USAMP. (2006). Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium.
Vinotha, D., Raghukandan, K., Pillai, U. T. S., & Pai, B. C. (2009). Grain refining mechanisms in magnesium alloys - An overview. In Transactions of the Indian Institute of Metals. https://doi.org/10.1007/s12666-009-0088-8
Wang, Y., Zeng, X. and Ding, W. (2006). Effect of Al-4Ti-5B Master Alloy on the Grain Refinement of AZ31 Magnesium Alloy. Scipta Materialia, 54, pp 269-273.
Wang, Z., Kang, Y., Dong, W., Zhao, H., Liu, J. and Xu, Y. (2005). Study of Grain Refinement and SiC Nanoparticle Reinforced Magnesium Alloy. Material Sciense Forum, 488–489, 889–892.
Watarai, H. (2006). Trend of Research and Development for Magnesium Alloys-Reducing the Weight of Structural Materialsin Motor Vehicles. Science & Technology Trends, Quarterly(2), 84–97.
Wu, G., Fan, Y., Gao, H., Zhai, C., & Zhu, Y. P. (2005). The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Materials Science and Engineering A, 408(1–2), 255–263. https://doi.org/10.1016/j.msea.2005.08.011
Xue, F., Du, W., Sun, Y., & Science, M. (2005). Microstructure Refinement of Magnesium Based Alloy. 489, 143–146. https://doi.org/10.4028/www.scientific.net/MSF.488-489.143
YANG, M. bo, PAN, F. sheng, SHEN, J., & BAI, L. (2009). Comparison of Sb and Sr on modification and refinement of Mg2Si phase in AZ61-0.7Si magnesium alloy. Transactions of Nonferrous Metals Society of China (English Edition), 19(2), 287–292. https://doi.org/10.1016/S1003-6326(08)60266-6
Yang, Z., Li, J. P., Zhang, J. X., Lorimer, G. W., & Robson, J. (2008). Review on Research and Development of Magnesium Alloys. Acta Metall. Sin.(Engl. Lett, 21(5), 313–328. https://doi.org/10.1016/S1006-7191(08)60054-X
Yano, E., Tamura, Y., Motegi, T., & Sato, E. (2003). Effect of Carbon Powder on Grain Refinement of an AZ91E Magnesium Alloy * 1. Materials Transaction, 44 No 1, 107 to 110.
You, S., Huang, Y., Kainer, K. U., & Hort, N. (2017). Recent research and developments on wrought magnesium alloys. In Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2017.09.001
Zhao, Z., Chen, Q., Wang, Y., & Shu, D. (2009). Microstructures and mechanical properties of AZ91D alloys with Y addition. 515, 152–161. https://doi.org/10.1016/j.msea.2009.03.030
Zhiyong, Y., Yuhua, Z., Weili, C., Jinshan, Z., & Yinghui, W. (2012). Effect of Cu addition on microstructure and properties of Mg-10Zn-5Al-0.1 Sb high zinc magnesium alloy. Research & Development, 41(February), 16–22. https://doi.org/10.1016/j.matdes.2012.04.036
Additional Files
Published
Issue
Section
License
Copyright (c) 2021 Adi Ganda Putra, Azwar Manaf, Djoko HP
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Penulis yang menyerahkan artikel di Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik untuk keperluan publikasi telah mengetahui bahwa Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik memberikan akses terbuka terhadap konten untuk mendukung pertukaran informasi mengenai ilmu pengetahuan, sesuai dengan penerbitan daring yang berbasis Open Access Journal dan mengikuti Creative Commons Attribution 4.0 International License. Sehingga penulis setuju dengan ketentuan-ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak publikasi pertama kepada pihak jurnal dengan pekerjaan secara bersamaan
di bawah Creative Commons Attribution 4.0 International License yang memungkinkan orang lain untuk berbagi pekerjaan
dengan pengakuan kepengarangan karya dan publikasi pertama artikel tersebut di Jurnal Teknik: Media Pengembangan dan
Aplikasi Teknik.
2. Penulis dapat melakukan perjanjian tambahan untuk hak distribusi non-eksklusif artikel yang telah diterbitkan di jurnal ini
(misalnya, posting ke sebuah repositori institusi atau menerbitkannya dalam sebuah buku), dengan mengakui bahwa
publikasi pertama dilakukan di Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik.
3. Penulis diizinkan dan didorong untuk menyebarkan karya mereka secara daring (misalnya, dalam repositori institusi atau
laman web penulis) setelah artikel terbit (proses penerbitan artikel selesai). Hal ini terkait dengan imbas dari pertukaran
informasi yang produktif (Lihat Pengaruh Open Access).