Studi Awal Pembuatan Polymer Matrix Composite (PMC) Epoksi yang Didoping Nanopartikel ZnO sebagai Material Antibakteri

Authors

  • Manty Aldilani Ikaningsih Fakultas Teknik - Universitas Jenderal Achmad Yani
  • Ghazi Alwan Rafi Universitas Jenderal Achmad Yani
  • Djoko Hadi Prajitno Pusat Sains dan Teknologi Nuklir Terapan (PSTNT) Batan

DOI:

https://doi.org/10.55893/jt.vol21no1.438

Keywords:

antibacterial, epoxy, ZnO nanoparticle, polymmer matrix composite (PMC)

Abstract

Bacteria that stick to and accumulate on the toothbrush can cause infection or disease in the oral cavity. Therefore, many antibacterial materials are being researched to inhibit bacterial growth, even kill bacteria. In this preliminary research, polymer matrix composite with an epoxy matrix doped with ZnO nanoparticles was carried out as an antibacterial material on toothbrushes. The epoxy matrix, hardener, and ZnO nanoparticles are mixed until they are homogeneous and then printed like a toothbrush. The ratio of resin and hardener varied 1R:1H and 2R:1H with variations of ZnO are 0%; 0.6% and 0.9%. XRD, hardness, FTIR, and bending tests have been carried out to determine the characteristics of PMC. The hardness of PMC with ZnO 0%; 0.6%; 0.9% respectively are 55.6; 58.5; 60.5 for 1R:1H and 73.3; 74.3; 74.8 for 2R:1H. Testing for antibacterial properties using a spectrophotometer with the optical density method was carried out to determine the antibacterial. The highest antibacterial properties were PMC with ZnO 0.9% 2R:1H. Based on data, it was found that the hardness was getting higher along with the increasing ZnO nanoparticles and the ratio of resin. For testing antibacterial properties, increasing ZnO nanoparticles resulted in an increase in the antibacterial properties.

Author Biography

  • Ghazi Alwan Rafi, Universitas Jenderal Achmad Yani

    Program Studi Teknik Metalurgi

References

ASTM INTERNATIONAL. (2002). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. D790. In Annual Book of ASTM Standards. https://doi.org/10.1520/D0790-10.

Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., Habib, S. S., & Memic, A. (2012). Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. International Journal of Nanomedicine, 7, 6003–6009. https://doi.org/10.2147/IJN.S35347

Bawardi, J. T. (2018). Pembuatan Biofilm Antibakteri Berbahan Nanopartikel ZnO.

Callister, W. D., & Rethwisch, D. G. (2009). Materials science and engineering. In John Wiley & Sons, Inc. (8th ed.). John Wiley and Sons Inc.

Chavali, M. S., & Nikolova, M. P. (2019). Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Sciences, 1(6), 607. https://doi.org/10.1007/s42452-019-0592-3

Droval, G., Aranberri, I., Bilbao, A., German, L., Verelst, M., & Dexpert-Ghys, J. (2008). Antimicrobial activity of nanocomposites: Poly(amide) 6 and low density poly(ethylene) filled with zinc oxide. E-Polymers, 128. https://doi.org/10.1515/epoly.2008.8.1.1467

Gibson, G. (2017). Epoxy Resins. In Brydson’s Plastics Materials: Eighth Edition (pp. 773–797). Elsevier Inc. https://doi.org/10.1016/B978-0-323-35824-8.00027-X

Hrenovic, J., Milenkovic, J., Daneu, N., Kepcija, R. M., & Rajic, N. (2012). Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite. Chemosphere, 88, 1103–1107. https://doi.org/10.1016/j.chemosphere.2012.05.023

HT, I. (2020). Measuring Biomass in Shake Flasks: Offline OD vs. Online Backscatter Light / EN Blog | INFORS HT. https://www.infors-ht.com/fr/blog/measuring-biomass-in-shake-flasks-offline-od-vs-online-backscatter-light/

Jones, N., Ray, B., Ranjit, K. T., & Manna, A. C. (2007). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. https://doi.org/10.1111/j.1574-6968.2007.01012.x

Kumar, R., Umar, A., Kumar, G., & Nalwa, H. S. (2017). Antimicrobial properties of ZnO nanomaterials: A review. In Ceramics International (Vol. 43, Issue 5, pp. 3940–3961). Elsevier Ltd. https://doi.org/10.1016/j.ceramint.2016.12.062

Padmavathy, N., & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles - An antimicrobial study. Science and Technology of Advanced Materials, 9(3). https://doi.org/10.1088/1468-6996/9/3/035004

Pasaribu, K. F., & Saragih, H. (2013). Aktivitas Antimikrobial Nanopartikel Zinc Oxide ( ZnO ) pada Strain Staphylococcus Aureus. In Prosiding Seminar Kontribusi Fisika 2013 (Issue Desember).

Prasanna, S. R. V. S., Balaji, K., Pandey, S., & Rana, S. (2019). Metal Oxide Based Nanomaterials and Their Polymer Nanocomposites. In Nanomaterials and Polymer Nanocomposites (pp. 123–144). Elsevier. https://doi.org/10.1016/b978-0-12-814615-6.00004-7

Wu, C., Yan, Y., Wang, Y., Sun, P., & Qi, R. (2020). Antibacterial epoxy composites with addition of natural Artemisia annua waste. E-Polymers, 20(1), 262–271. https://doi.org/10.1515/epoly-2020-0029

Additional Files

Published

2022-07-05

How to Cite

Studi Awal Pembuatan Polymer Matrix Composite (PMC) Epoksi yang Didoping Nanopartikel ZnO sebagai Material Antibakteri. (2022). Jurnal Teknik: Media Pengembangan Ilmu Dan Aplikasi Teknik, 21(1), 74-83. https://doi.org/10.55893/jt.vol21no1.438

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.