Analisis Kerentanan Shelter Tsunami terhadap Beban Gempa dan Tsunami Menggunakan Metode Time History dan Incremental Dynamic Analysis

Authors

DOI:

https://doi.org/10.55893/jt.vol24no2.733

Keywords:

earthquake, structure fragility, shelter, Time History, tsunami

Abstract

Palabuhanratu is a location with an elevated risk of an 8.9 Mw earthquake and a 20-meter tsunami, with a population of approximately 119,347 and up to 1.7 million annual visitors. This research analyzes the shelter's fragility using non-linear time history and Incremental Dynamic Analysis methods under three recorded earthquakes; Chi-Chi, Iwate, and Tohoku and tsunami loads with variations of 2.5–20 m inundation. The analysis results show that the structure satisfies IO performance against earthquakes at scale 1.0 but experiences a significant increase in roof drift due to tsunami loads and exceeds LS limit, especially at 15 m inundation height. The fragility curves show that the probability of extensive damage reaches 95.6% and the collapse probability 10.93% in the tsunami with debris, whereas in the scenario without debris the probability of extensive damage is almost zero. The findings confirm the importance of considering debris loads in tsunami shelter design and provide an empirical basis for the development of fragility curves for tsunami shelter structures.

References

Anggraini, A., & Mardhatillah, E. (2020). Perubahan stress statis gempa utama dan asosiasi distribusi gempa susulan: Studi kasus gempa Palu Mw 7,5 28 September 2018. Jurnal Fisika Indonesia, 24(1), 38–42.

Ashar, F., Amaratunga, D., & Haigh, R. (2014). The analysis of tsunami vertical shelter in Padang City. Procedia Economics and Finance, 18, 916–923. https://doi.org/10.1016/s2212-5671(14)01018-1

BNPB. (2022). IRBI (Indeks Risiko Bencana Indonesia) (Vol. 1, Issue 1). Badan Nasional Penanggulangan Bencana.

BNPB. (2023). RBI: Risiko Bencana Indonesia “Memahami Risiko Sistemik di Indonesia.” In BNPB. Badan Nasional Penanggulangan Bencana.

BSN. (2020). Tata cara pemilihan dan modifikasi gerak tanah permukaan untuk perencanaan gedung tahan gempa. In Badan Standarisasi Nasional 8899:2020. Badan Standardisasi Nasional.

FEMA. (2019). Guidelines for Design of Structures for Vertical Evacuation From Tsunamis 3rd Edition (Issue August). Federal Emergency Management Agency.

FEMA. (2022). Hazus Earthquake Model Technical Manual (Hazus 5.1). In The Hazus Loss Estimation Methodology (Issue July). Federal Emergency Management Agency.

Indira, I., & Manessa, M. D. M. (2023). Generating Evacuation Route for Tsunami Evacuation Based on Megathrust Scenario Hazard Model in Palabuhanratu Village, Sukabumi, West Java. International Journal of Disaster Management, 6(1), 35–48. https://doi.org/10.24815/ijdm.v6i1.31148

Isobe, D., & Tanaka, S. (2021). Sequential simulations of steel frame buildings under multi-phase hazardous loads during earthquake and tsunami. Frontiers in Built Environment, 7(May), 1–17. https://doi.org/10.3389/fbuil.2021.669601

Kaplan, O., Guney, Y., & Dogangun, A. (2021). A period-height relationship for newly constructed mid-rise reinforced concrete buildings in Turkey. Engineering Structures, 232(January), 1–14. https://doi.org/10.1016/j.engstruct.2020.111807

Kurniawandy, A., Aminsyah, M., Cahyadi, B. U., & Djauhari, Z. (2023). Comparative study of the simulation ground motion by amplitude scale and spectral matching. E3S Web of Conferences, 464, 1–8. https://doi.org/10.1051/e3sconf/202346402007

Lahcene, E., Ioannou, I., Suppasri, A., Pakoksung, K., Paulik, R., Syamsidik, S., Bouchette, F., & Imamura, F. (2021). Characteristics of building fragility curves for seismic and non-seismic tsunamis: Case studies of the 2018 Sunda Strait, 2018 Sulawesi-Palu, and 2004 Indian Ocean tsunamis. Natural Hazards and Earth System Sciences, 21(8), 2313–2344. https://doi.org/10.5194/nhess-21-2313-2021

Macabuag, J., Rossetto, T., Ioannou, I., & Eames, I. (2018). Investigation of the effect of debris-induced damage for constructing tsunami fragility curves for buildings. Geosciences (Switzerland), 8(4), 1–16. https://doi.org/10.3390/geosciences8040117

Manfredi, V., Masi, A., Özcebe, A. G., Paolucci, R., & Smerzini, C. (2022). Selection and spectral matching of recorded ground motions for seismic fragility analyses. Bulletin of Earthquake Engineering, 20(10), 4961–4987. https://doi.org/10.1007/s10518-022-01393-0

Mas, E., Paulik, R., Pakoksung, K., Adriano, B., Moya, L., Suppasri, A., Muhari, A., Khomarudin, R., Yokoya, N., Matsuoka, M., & Koshimura, S. (2020). Characteristics of tsunami fragility functions developed using different sources of damage data from the 2018 Sulawesi earthquake and tsunami. Pure and Applied Geophysics, 177(6), 2437–2455. https://doi.org/10.1007/s00024-020-02501-4

Mentari, S. (2020). Respon struktur gedung bertingkat banyak dengan layout persegi panjang menggunakan dinding geser di perimeter bagian luar dan bagian dalam. Jurnal Teknik Sipil, 16(2), 157–171. https://doi.org/10.28932/jts.v16i2.2772

Mutaqin, B. W., Amri, I., & Aditya, B. (2020). Pola kejadian tsunami dan perkembangan manajemen bencana di Indonesia setelah Tsunami Samudra Hindia Tahun 2004: Sebuah tinjauan. Jurnal Lingkungan Dan Bencana Geologi, 11(2), 73–85.

Pradana, A. B., Saputra, R. P., Indarto, H., & Nurhuda, I. (2015). Desain struktur Tempat Evakuasi Sementara tsunami Di Bengkulu. Jurnal Karya Teknik Sipil, 4(4), 69–84.

Rahman, F., Idris, Y., Abdullah, A., & Asyifa, C. N. (2022). Pengembangan kurva kerapuhan berbasis Incremental Dynamic Analysis pada bangunan tipikal Puskesmas di Kota Banda Aceh terhadap bahaya gempa. Journal of The Civil Engineering Student, 4(3), 246–252. https://doi.org/10.24815/journalces.v4i3.21275

Rossetto, T., De la Barra, C., Petrone, C., De la Llera, J. C., Vásquez, J., & Baiguera, M. (2019). Comparative assessment of nonlinear static and dynamic methods for analysing building response under sequential earthquake and tsunami. Earthquake Engineering and Structural Dynamics, 48(8), 867–887. https://doi.org/10.1002/eqe.3167

Schwarz, G. M., Yang, K. P., Chou, C., & Chiu, Y. J. (2020). A classification of structural inertia: Variations in structural response. Asia Pacific Journal of Management, 37(1), 33–63. https://doi.org/10.1007/s10490-018-9588-6

Suarbawa, K. N., Sukarasa, I. K., & Riyono, E. (2021). Identifikasi deformasi Pulau Bali berdasarkan rekaman data GPS, menggunakan software GAMIT/GLOBK 10.6. Buletin Fisika Vol, 22(1), 47–52.

Supendi, P., Widiyantoro, S., Rawlinson, N., Yatimantoro, T., Muhari, A., Hanifa, N. R., Gunawan, E., Shiddiqi, H. A., Imran, I., Anugrah, S. D., Daryono, D., Prayitno, B. S., Adi, S. P., Karnawati, D., Faizal, L., & Damanik, R. (2023). On the potential for megathrust earthquakes and tsunamis off the southern coast of West Java and southeast Sumatra, Indonesia. Natural Hazards, 116(1), 1315–1328. https://doi.org/10.1007/s11069-022-05696-y

Sutarja, N., Pringgana, G., & Wikrama, M. A. S. (2021). The effects of earthquake and tsunami loadings on structural behavior of reinforced concrete building. Journal of Applied Engineering Science, 19(2), 282–291. https://doi.org/10.5937/jaes0-25655

Suwondo, R., Mangindaan, D., Cunningham, L., & Alama, S. (2021). Non-linear analysis of seismic performance of low-rise concrete buildings in Indonesia. IOP Conference Series: Earth and Environmental Science, 794(1), 1–8. https://doi.org/10.1088/1755-1315/794/1/012024

Tjandra, K. (2018). Empat bencana geologi yang Paling Mematikan. UGM Press.

Tun, Z. Z., Ruangrassamee, A., & Hussain, Q. (2022). Mitigation of Tsunami Debris Impact on Reinforced Concrete Buildings by Fender Structures. Buildings, 12(1), 1–18. https://doi.org/10.3390/buildings12010066

Utami, S. U., Muntasib, E. H., & Samosir, D. A. M. (2019). Manajemen bahaya di kawasan wisata pantai Karang Hawu, Kabupaten Sukabumi, Jawa Barat. Media Konservasi, 24(3), 322–333.

Vandecruys, E., Hendriks, M. A. N., Velde, M. van de, Lombaert, G., & Verstrynge, E. (2024). Dynamic stiffness parameter assessment of cracked reinforced concrete beams: A numerical and experimental study. Engineering Structures, 318, 118758.

Wang, S. Y., Zhuang, H. Y., Zhang, H., He, H. J., Jiang, W. P., Yao, E. L., Ruan, B., Wu, Y. X., & Miao, Y. (2021). Near-surface softening and healing in eastern Honshu associated with the 2011 magnitude-9 Tohoku-Oki Earthquake. Nature Communications, 12(1), 1–10. https://doi.org/10.1038/s41467-021-21418-7

Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N. R., Susilo, S., Supendi, P., Shiddiqi, H. A., Nugraha, A. D., & Putra, H. E. (2020). Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-72142-z

Published

2025-12-29

How to Cite

Analisis Kerentanan Shelter Tsunami terhadap Beban Gempa dan Tsunami Menggunakan Metode Time History dan Incremental Dynamic Analysis. (2025). Jurnal Teknik: Media Pengembangan Ilmu Dan Aplikasi Teknik, 24(2), 94-104. https://doi.org/10.55893/jt.vol24no2.733

Similar Articles

1-10 of 49

You may also start an advanced similarity search for this article.