Pembangunan Model Pendeteksi Risiko Preeklamsia pada Ibu Hamil dengan Menggunakan Metode Data Mining
DOI:
https://doi.org/10.55893/jt.vol23no1.543Keywords:
data mining, logistic regression, preeclampsiaAbstract
Preeclampsia is a pregnancy complication indicated by an increase in blood pressure that occurs after 20 weeks of gestation and the presence of protein in the urine. If not treated quickly, preeclampsia can lead to maternal and fetal death. Therefore, a method that can help health workers to provide early detection of preeclampsia is needed. One method that can be used is data mining. This study was conducted with the aim of developing a model based on data mining methods that can be used as a tool to identify patients with preeclampsia and also to identify associated risk factors. This study was conducted using six data mining classification algorithms on 109 obstetric clinic patient data at the Jakarta Pondok Kopi Islamic Hospital (RSIJPK). The input features used as preeclampsia detection attributes were obtained based on the results of a literature study and consultations with obstetricians. Based on the results of the model evaluation, logistic regression has the best performance in detecting preeclampsia with accuracy value of 98% and precision level of 100%. In addition, this study also designed an application prototype that can be used by health workers to quickly detect the risk of preeclampsia in pregnant women.
References
Baharuddin, M., Amelia, D., Suhowatsky, S., Kusuma, A., Suhargono, M. H., & Eng, B. (2019). Maternal death reviews: A retrospective case series of 90 hospital-based maternal deaths in 11 hospitals in Indonesia. International Journal of Gynecology and Obstetrics, 144, 59–64.
Chaemsaithong, P., Sahota, D. S., & Poon, L. C. (2022). First trimester preeclampsia screening and prediction. American Journal of Obstetrics and Gynecology, 226(2), 1071-1097.
Draelos, R. (2019). Measuring Performance: The Confusion Matrix. https://glassboxmedicine.com/2019/02/17/ measuring-performance-the-confusion-matrix/
Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation. https://scholarworks.utep.edu/cs_techrep/1209/
Chaemsaithong, P., Sahota, D. S., & Poon, L. C. (2022). First trimester preeclampsia screening and prediction. American Journal of Obstetrics and Gynecology, 226(2), 1071-1097.
Draelos, R. (2019). Measuring Performance: The Confusion Matrix. https://glassboxmedicine.com/2019/02/17/ measuring-performance-the-confusion-matrix/
Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation. https://scholarworks.utep.edu/cs_techrep/1209/
Hartini, E. (2016). Efficiency comparison of method of handling missing value in data evaluation system or component. Prosiding Seminar Nasional Teknologi Energi Nuklir 2016. https://karya.brin.go.id/id/eprint/1561/
Kustiyahningsih, Y., Mula’ab, & Hasanah, N. (2020). Metode Fuzzy ID3 untuk klasifikasi status preeklamsi ibu hamil. Teknika, 9(1), 74-80.
Maric, I., Tsur, A., Aghaeepour, N., Montanari, A., Stevenson, D. K., Shaw, G. M., & Winn, V. D. (2020). Early prediction of preeclampsia via machine learning. American Journal of Obstetrics & Gynecology MFM, 2(2), 100100.
Nair, A. (2021). Improve Your Hyperparameter Tuning Experience With The Random Search. https://towardsdatascience.com/improve-your-hyperparameter-tuning-experience-with-the-random-search-2c05d789175f
Niakšu, O. (2015). CRISP data mining methodology extension for medical domain. Baltic J. Modern Computing, 3(2), 92–109.
Obenshain, M. K. (2004). Application of data mining techniques to healthcare data. Infection control and hospital epidemiology, 25(8), 690–695.
Pittara. (2022). Preeklamsia. https://www.alodokter.com/preeklamsia
Poon, L. C., & Nicolaides, K. H. (2014). Early prediction of preeclampsia. Obstetrics and Gynecology International, 2014, 1–11.
Prabhakaran, S. (2023). Train test split - How to split data into train and test for validating machine learning models? https://www.machinelearningplus.com/machine-learning/train-test-split/
Roberts, J. M., & Gammill, H. S. (2005). Preeclampsia. Hypertension, 46(6), 1243–1249.
Silwattananusarn, T., & KuthidaTuamsuk, A. (2012). Data mining and its applications for knowledge management: A literature review from 2007 to 2012. International Journal of Data Mining & Knowledge management Process (IJDKP), 2(5). https://doi.org/10.5121/ijdkp.2012.2502
Subramanian, J., & Simon, R. (2013). Overfitting in prediction models – is it a problem only in high dimensions? Contemporary Clinical Trials, 36(2), 636–641.
Sufriyana, H., Wu, Y.-W., & Su, E. C.-Y. (2020). Artificial Intelligence-assisted prediction of preeclampsia: Development and external validation of a nationwide health insurance dataset of the BPJS kesehatan in Indonesia. EBioMedicine, 54, 102710.
World Health Organization. (2023). Maternal mortality. https://www.who.int/news-room/fact-sheets/detail/maternal-mortality
Ying, X. (2019). An overview of overfitting and its solutions. Journal of Physics: Conference Series, 1168, 022022.
Zhang, J., Han, L., Li, W., Chen, Q., Lei, J., Long, M., Yang, W., Li, W., Zeng, L., & Zeng, S. (2019). Early prediction of preeclampsia and small-for-gestational-age via multi-marker model in Chinese pregnancies: A prospective screening study. BMC Pregnancy and Childbirth, 19(1).
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Muhammad Ilham, Ni Luh Saddhwi Saraswati Adnyani, Kadarsah Suryadi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Penulis yang menyerahkan artikel di Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik untuk keperluan publikasi telah mengetahui bahwa Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik memberikan akses terbuka terhadap konten untuk mendukung pertukaran informasi mengenai ilmu pengetahuan, sesuai dengan penerbitan daring yang berbasis Open Access Journal dan mengikuti Creative Commons Attribution 4.0 International License. Sehingga penulis setuju dengan ketentuan-ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak publikasi pertama kepada pihak jurnal dengan pekerjaan secara bersamaan
di bawah Creative Commons Attribution 4.0 International License yang memungkinkan orang lain untuk berbagi pekerjaan
dengan pengakuan kepengarangan karya dan publikasi pertama artikel tersebut di Jurnal Teknik: Media Pengembangan dan
Aplikasi Teknik.
2. Penulis dapat melakukan perjanjian tambahan untuk hak distribusi non-eksklusif artikel yang telah diterbitkan di jurnal ini
(misalnya, posting ke sebuah repositori institusi atau menerbitkannya dalam sebuah buku), dengan mengakui bahwa
publikasi pertama dilakukan di Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik.
3. Penulis diizinkan dan didorong untuk menyebarkan karya mereka secara daring (misalnya, dalam repositori institusi atau
laman web penulis) setelah artikel terbit (proses penerbitan artikel selesai). Hal ini terkait dengan imbas dari pertukaran
informasi yang produktif (Lihat Pengaruh Open Access).