Pengambilan Kembali Vanadium Pentaoksida dari Katalis Bekas
DOI:
https://doi.org/10.26874/jt.vol17no2.87Keywords:
Vanadium, Oksida, Ekstraksi, KatalisAbstract
Katalis vanadium bekas diperkirakan akan menjadi salah satu sumber utama persediaan vanadium di masa mendatang. Hasil analisis vanadium dalam katalis vanadium bekas menunjukkan bahwa kadar V2O5 nyamasih cukup banyak untuk diambil dan diolah kembali. Dalam penelitian ini, suatu prosedur telah dikembangkan untuk mengesktraksi vanadium dari katalis vanadium bekas berdasarkan prosedur yang dikembangkan oleh peneliti terdahulu. Katalis vanadium bekas uji coba prosedur menunjukkan bahwa metode gabungan ekstraksi vanadium dari katalis vanadium bekas menggunakan pelarut basa Na2CO3 dan H2O2 pada umpan (tahap ekstraksi pertama) dan NaOH (tahap ekstraksi kedua) yang diikuti dengan netralisasi filtrat dengan asam H2SO4 merupakan prosedur terbaik. Lebih lanjut, terdapat tiga variabel yang sangat berpengaruh dalam pengambilan kembali vanadium dari katalis vanadium bekas, yang ditandai dengan nilai probability of being active di atas 50%. Ketiga variabel tersebut adalah temperatur pengadukan pada tahap ekstraksi II, penambahan larutan H2O2 di umpan dan waktu pengadukan pada tahap ekstraksi I dengan nilai probability of being active secara berturut-turut sebesar 100%, 86%, dan 56%. Untuk mendapatkan perolehan vanadium yang lebih tinggi perlu diadakan penelitian lanjutan yang mengoptimumkan variabel-variabel tersebut.
References
da Cruz Deniz, A. B., Valt, R. B., Kaminari, N. M., de Santana Ponte, M. J., dan de Araújo Ponte, H. (2018). Parameters of an electrokinetic reactor design for vanadium recovery from fluid catalytic cracking catalysts. . Separation and Purification Technology, 193, 297-302.
Douglas, K., dan Louie, P. (2005). Handbook of sulfuric acid manufacturing. Thornill: DKL Engineering Inc.
Emmet, P. (1960). Catalyst Vol VII. New York: Reinhold Publ. Co.
Erust, C., Akcil, A., Bedelova, Z., Anarbekov, K., Baikonurova, A., dan Tancuk, A. (2016). Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: laboratory and semi-pilot tests. Waste Management, 49, 455-461.
Gerhartz, W. (1996). Vanadium and vanadium compounds. Dalam F. Ullmann, & J. F. Rounsaville, Ullmann's encyclopedia of industrial chemistry Vol. A27 (hal. 367). Weinheim: Wiley-VCH.
Haaland, P. D. (1989). Experimental Design in Biotechnology. New York: Marcel Dekker Inc.
Hans, dan Reinhard. (1986). Der Vanadiumkatalysator. Erzmetall, 39.
Ifa, L., dan Nurjannah, N. (2017). Ekstraksi Vanadium Pentaoksida (V2O5) dari Katalis vanadium bekas. Prosiding Seminar Nasional Teknologi IV. Samarinda.
Kar, B., Murthy, B., dan Misra, V. (2005). Extraction of molybdenum from spent catalyst by salt-roasting. International Journal of Mineral Processing, 76, 143-147.
Kim, H. I., Moon, G., Choi, I., Lee, J. Y., dan Jyothi, R. K. (2018). Hydrometallurgical process development for the extraction, separation and recovery of vanadium from spent desulfurization catalyst bio-leach liquors. . Journal of Cleaner Production, 187, 449-458.
Kleinberg, J., Argersinger, W. J., dan Griswold, E. (1960). Inorganic Chemistry. Boston: D.C Heat and Co.
Mohanty, J., Rath, P. C., Bhattacharya, I. N., & Paramguru, R. K. (2011). The recovery of vanadium from spent catalyst: a case study. Mineral Processing and Extractive Metallurgy Vol 120 (1), 56-60.
Nagib, S., dan Abdel Hameed, R. S. (2017). Recovery of vanadium from hydrodesulfurization waste catalyst using calix [4] resorcinarenes. Green Chemistry Letters and Reviews, 10 (4), 210-215.
Nguyen, T. H., dan Lee, M. S. (2014). Recovery of molybdenum and vanadium with high purity from sulfuric acid leach solution of spent hydrodesulfurization catalysts by ion exchange. Hydrometallurgy, 147, 142-147.
R, M. R., dan Alfantazim, A. M. (2003). Processing of vanadium: a review. Mineral Engineering, 16, 793-805.
Rokukawa, N. (1983). Extraction of Molybdenum and Vanadium from spent Desulfurization Catalyst. Journal of Mining and Metallurgical Institute of Japan, 99(1145), 589-592.
Shao, Y., Feng, Q., Chen, Y., Ou, L., Zhang, G., dan Lu, Y. (2009). Studies on recovery of vanadium from desilication residue obtained from processing of a spent catalyst. Hydrometallurgy, 96, 166-170.
Snell, E. (1974). Encyclopedia of Industrial Chemical Analysis Vol. 19. New York: Interscience Publisher Inc.
Sun, D., Li, X., Brungs, M., dan Trimm, D. (1998). Encapsulation of heavy metals on spent fluid catalytic cracking catalyst. Water Science and Technology, 38, 211-217.
Sun, D., Tay, J., Cheong, H., Leung, D., dan Qian, G. (2001). Recovery of heavy metals and stabilization of spent hydrotreating catalyst using a glass–ceramic matrix. Journal of Hazardous Materials B, 87, 213-223.
Van den Berg, J., Yang, Y., Nauta, H., van Sandwijk, A., dan Reuter, M. (2002). Comprehensive processing of low grade sulphidic molybdenum ores. Minerals Engineering, 15, 879–883.
Wang, X., Wang, H., Gao, D., Chen, B., Meng, Y., dan Wang, M. (2018). A clean technology to separate and recover vanadium and chromium from chromate solutions. . Hydrometallurgy, 177, 94-99.
Zeng, L., dan Cheng, C. (2009). A literature review of the recovery of molybdenum dan vanadium from spent hydrodesulphurisation catalyst part 1: metallurgical processes. Hydrometallurgy, 98, 1-9.
Zhang, P., Inoue, K., Yoshizuka, K., dan Tsuyama, H. (1995). Recovery of metal values from spent hydrodesulfurisation catalyst by solvent extraction with PIA-8. Japan Chemistry 5, 412.
Zhang, P., Inoue, K., Yoshizuka, K., dan Tsuyama, H. (1996). Extraction and selective stripping of molybdenum (VI) and vanadium (IV) from sulphuric acid solution stripping of molybdenum (VI) and vanadium (IV) from sulphuric acid solution containing aluminium (III), cobalt (II), nickel (II) and iron (III) by LIX 63 . Hydrometallurgy, 41, 45-53.
Downloads
Published
Issue
Section
License
Penulis yang menyerahkan artikel di Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik untuk keperluan publikasi telah mengetahui bahwa Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik memberikan akses terbuka terhadap konten untuk mendukung pertukaran informasi mengenai ilmu pengetahuan, sesuai dengan penerbitan daring yang berbasis Open Access Journal dan mengikuti Creative Commons Attribution 4.0 International License. Sehingga penulis setuju dengan ketentuan-ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak publikasi pertama kepada pihak jurnal dengan pekerjaan secara bersamaan
di bawah Creative Commons Attribution 4.0 International License yang memungkinkan orang lain untuk berbagi pekerjaan
dengan pengakuan kepengarangan karya dan publikasi pertama artikel tersebut di Jurnal Teknik: Media Pengembangan dan
Aplikasi Teknik.
2. Penulis dapat melakukan perjanjian tambahan untuk hak distribusi non-eksklusif artikel yang telah diterbitkan di jurnal ini
(misalnya, posting ke sebuah repositori institusi atau menerbitkannya dalam sebuah buku), dengan mengakui bahwa
publikasi pertama dilakukan di Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik.
3. Penulis diizinkan dan didorong untuk menyebarkan karya mereka secara daring (misalnya, dalam repositori institusi atau
laman web penulis) setelah artikel terbit (proses penerbitan artikel selesai). Hal ini terkait dengan imbas dari pertukaran
informasi yang produktif (Lihat Pengaruh Open Access).