Pengembangan Katalis Berbasis Tungsten Oksida (WO3) untuk Degradasi Limbah Palm Oil Mill Effluent (POME) dengan Teknologi Fotokatalitik

Penulis

  • Rospita Uli Institut Teknologi Bandung
  • Wibawa Hendra Saputera Institut Teknologi Bandung
  • Dwiwahju Sasongko Institut Teknologi Bandung
  • Hary Devianto Institut Teknologi Bandung

DOI:

https://doi.org/10.55893/jt.vol24no1.664

Kata Kunci:

WO3, POME, Fotokatalitik, AOPs , COD

Abstrak

Industri minyak kelapa sawit menghasilkan limbah signifikan seperti POME yang dapat mencemari lingkungan jika tidak dikelola dengan baik. POME dapat merusak lingkungan terutama ekosistem perairan. Pengolahan POME penting untuk keberlanjutan industri ini. Advanced Oxidation Processes (AOPs), termasuk fotokatalitik, merupakan salah satu opsi teknologi yang dikembangkan untuk mendegradasi senyawa organik dalam limbah POME. Dalam studi ini, degradasi fotokatalitik limbah POME menggunakan katalis berbasis WO3 dengan menggunakan lampu Xenon 500 W menunjukkan bahwa metode ini efektif dalam mengurai limbah POME. Fotokatalis WO3 disintesis menggunakan metode hidrotermal pada temperatur 180, 200, 220, dan 240 °C, menghasilkan struktur kristal Hexagonal dan Orthorhombic, danTipe V mesopori. Penggunaan katalis WO3 dengan konsentrasi 1 g/L mampu mengurangi Chemical Oxygen Demand (COD) hingga 48,05%, degradasi warna hingga 36,22%, dengan konstanta laju reaksi COD  sebesar 3,7×10-3 menit-1.

Biografi Penulis

  • Rospita Uli, Institut Teknologi Bandung

    Program Studi Teknik Kimia

  • Wibawa Hendra Saputera, Institut Teknologi Bandung

    Program Studi Teknik Kimia

  • Dwiwahju Sasongko, Institut Teknologi Bandung

    Program Studi Teknik Kimia

  • Hary Devianto, Institut Teknologi Bandung

    Program Studi Teknik Kimia

Referensi

Amadine, O., Essamlali, Y., Fihri, A., Larzek, M., & Zahouily, M. (2017). Effect of calcination temperature on the structure and catalytic performance of copper-ceria mixed oxide catalysts in phenol hydroxylation. RSC Advances, 7(21), 12586–12597. https://doi.org/10.1039/c7ra00734e

Ameta, R., Benjamin, S., Ameta, A., & Ameta, S. C. (2013). Photocatalytic degradation of organic pollutants: A review. Materials Science Forum, 734, 247–272. https://doi.org/10.4028/www.scientific.net/MSF.734.247

Aqilah, N., Razali, M., Norharyati, W., Salleh, W., Rosman, N., & Hafiza, N. (2021). Materials Today: Proceedings Palm oil mill effluent treatment using tungsten trioxide: Adsorption and photocatalytic degradation. Materials Today: Proceedings, 41, 22-27. https://doi.org/10.1016/j.matpr.2020.08.424

Cheng, C. K., Rizauddin Derahman, M., & Khan, M. R. (2015). Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania. Journal of Environmental Chemical Engineering, 3(1), 261–270. https://doi.org/10.1016/j.jece.2014.10.016

Cheng, H., Wang, J., Zhao, Y., & Han, X. (2014). Effect of phase composition, morphology, and specific surface area on the photocatalytic activity of TiO2 nanomaterials. RSC Advances, 4(87), 47031–47038. https://doi.org/10.1039/c4ra05509h

Fakhri, A., & Behrouz, S. (2015). Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation. Solar Energy, 112, 163–168. https://doi.org/10.1016/j.solener.2014.11.014

Jiang, S., You, Z., & Tang, N. (2023). Effects of Calcination Temperature and Calcination Atmosphere on the Performance of CO3O4 Catalysts for the Catalytic Oxidation of Toluene. Processes, 11(7). https://doi.org/10.3390/pr11072087

Lv, K., Li, J., Qing, X., Li, W., & Chen, Q. (2011). Synthesis and photo-degradation application of WO3/TiO2 hollow spheres. Journal of Hazardous Materials, 189(1–2), 329–335. https://doi.org/10.1016/j.jhazmat.2011.02.038

Ng, K. H., Lee, C. H., Khan, M. R., & Cheng, C. K. (2016). Photocatalytic degradation of recalcitrant POME waste by using silver doped titania: Photokinetics and scavenging studies. Chemical Engineering Journal, 286, 282–290. https://doi.org/10.1016/j.cej.2015.10.072

Prabhu, S., Cindrella, L., Kwon, O. J., & Mohanraju, K. (2018). Photoelectrochemical and photocatalytic activity of TiO2-WO3 heterostructures boosted by mutual interaction. Materials Science in Semiconductor Processing, 88(June), 10–19. https://doi.org/10.1016/j.mssp.2018.07.028

Putri, R. M., Almunadya, N. S., Amri, A. F., Afnan, N. T., Nurachman, Z., Devianto, H., & Saputera, W. H. (2022). Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation. ACS Omega, 7(48), 44047–44056. https://doi.org/10.1021/acsomega.2c05450

Qin, Y., Xun, S., Zhan, L., Lu, Q., He, M., Jiang, W., Li, H., Zhang, M., Zhu, W., & Li, H. (2017). Synthesis of mesoporous WO3/TiO2 catalyst and its excellent catalytic performance for the oxidation of dibenzothiophene. New Journal of Chemistry, 41(2), 569–578. https://doi.org/10.1039/c6nj02503j

Razali, N. A. M., Salleh, W. N. W., Aziz, F., Jye, L. W., Yusof, N., Jaafar, J., & Ismail, A. F. (2022). Influence of g-C3N4 and PANI onto WO3 photocatalyst on the photocatalytic degradation of POME. Materials Today: Proceedings, 65, 3054–3059. https://doi.org/10.1016/j.matpr.2022.04.118

Saputera, W. H., Amri, A. F., Mukti, R. R., Suendo, V., Devianto, H., & Sasongko, D. (2021). Photocatalytic degradation of palm oil mill effluent (Pome) waste using bivo4 based catalysts. Molecules, 26(20). https://doi.org/10.3390/molecules26206225

Shang, X., Hu, G., He, C., Zhao, J., Zhang, F., Xu, Y., Zhang, Y., Li, J., & Chen, J. (2012). Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant. Journal of Industrial and Engineering Chemistry, 18(1), 513–519. https://doi.org/10.1016/j.jiec.2011.11.070

Shariah Ghazali, S., Jusoh, R., & Haslinda Shariffuddin, J. (2019). Parameter Affecting Photocatalytic Degradation of POME using LaCa as Photocatalyst. Materials Today: Proceedings, 19, 1173–1182. https://doi.org/10.1016/j.matpr.2019.11.120

Wang, Q., Zhang, W., Hu, X., Xu, L., Chen, G., & Li, X. (2021). Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light. Journal of Water Process Engineering, 40(July 2020), 101943. https://doi.org/10.1016/j.jwpe.2021.101943

Xu, T., Wang, Y., Zhou, X., Zheng, X., Xu, Q., Chen, Z., Ren, Y., & Yan, B. (2017). Fabrication and assembly of two-dimensional TiO2 /WO3·H2O heterostructures with type II band alignment for enhanced photocatalytic performance. Applied Surface Science, 403, 564–571. https://doi.org/10.1016/j.apsusc.2017.01.242

Zhu, X., Zhang, P., Li, B., Hu, Q., Su, W., Dong, L., & Wang, F. (2017). Preparation, characterization and photocatalytic properties of La/WO3 composites. Journal of Materials Science: Materials in Electronics, 28(16), 12158–12167. https://doi.org/10.1007/s10854-017-7030-3

File Tambahan

Diterbitkan

2025-06-02

Cara Mengutip

Pengembangan Katalis Berbasis Tungsten Oksida (WO3) untuk Degradasi Limbah Palm Oil Mill Effluent (POME) dengan Teknologi Fotokatalitik. (2025). Jurnal Teknik: Media Pengembangan Ilmu Dan Aplikasi Teknik, 24(1), 34-42. https://doi.org/10.55893/jt.vol24no1.664