Penambahan Gardu Distribusi Berdasarkan Pertumbuhan Beban Listrik Menggunakan GUI Matlab di Wilayah Tangerang
DOI:
https://doi.org/10.55893/jt.vol22no1.499Keywords:
load growth, distribution substation, transformer, graphic user interfaceAbstract
Distribution system development Planning is very important in line with the increasing need for electricity loads, attention must be paid to quality of power delivered to consumers. The addition of a distribution network will certainly result in an increase in the capacity and number of transformers and distribution substations. The addition of distribution substations was based on the selection of distribution transformer ratings based on the growth of their load. The distribution transformer loading is made at a maximum of 80% with distributed model. Distribution transformers addition calculation requires an approach to connect the total distribution transformers and distribution substations, namely the average result of the total distribution transformers divided by the total distribution substations, it requires quite complex calculations. To make planning for adding distribution substations easier, you can use the Matlab Graphical User Interface (GUI). With the Matlab GUI program, projections for adding substations can be done easily, quickly, and precisely, and can be applied to any region more accurately. Based on the results of the GUI simulation, it was found that the total additional transformer capacity for the Tangerang area was 1.6 MVA with the addition of 7 distribution substations.
References
Afrasiabi, M., Mohammadi, M., Rastegar, M., Stankovic, L., Afrasiabi, S., & Khazaei, M. (2020). Deep-Based Conditional Probability Density Function Forecasting of Residential Loads. IEEE Transactions on Smart Grid, 11(4), 3646–3657. https://doi.org/10.1109/TSG.2020.2972513
Djamali, M., Tenbohlen, S., Junge, E., & Konermann, M. (2018). Real-Time Evaluation of the Dynamic Loading Capability of Indoor Distribution Transformers. IEEE Transactions on Power Delivery, 33(3), 1134–1142. https://doi.org/10.1109/TPWRD.2017.2728820
Dwiyoko, G., Sukisno, T., & Damarwan, E. S. (2020). Proyeksi Kebutuhan Energi Listrik Kabupaten Purbalingga Tahun 2030 Menggunakan Software Leap. Jurnal Edukasi Elektro, 4(1), 29–40. https://doi.org/10.21831/jee.v4i1.32043
Firdaus, A. A., Penangsang, O., Soeprijanto, A., & Dimas Fajar, U. P. (2018). Distribution network reconfiguration using binary particle swarm optimization to minimize losses and decrease voltage stability index. Bulletin of Electrical Engineering and Informatics, 7(4), 514–521. https://doi.org/10.11591/eei.v7i4.821
Gde Made Yoga Semadhi Artha, I. (2019). Transformer’s Load Forecasting to Find the Transformer Usage Capacity with Adaptive Neuro-Fuzzy Inference System Method. Journal of Electrical and Electronic Engineering, 7(1), 1. https://doi.org/10.11648/j.jeee.20190701.11
Gligor, A., Vlasa, I., Dumitru, C.-D., Moldovan, C. E., & Damian, C. (2020). Power Demand Forecast for Optimization of the Distribution Costs. Procedia Manufacturing, 46, 384–390. https://doi.org/10.1016/j.promfg.2020.03.056
Handayani, O., Senen, A., Widyastuti, C., & Sukma, D. Y. (2021). Micro-Spatial Electricity Planning in Urban Area Based on Energy Demand. 2021 3rd International Conference on High Voltage Engineering and Power Systems, ICHVEPS 2021, 155–160. https://doi.org/10.1109/ICHVEPS53178.2021.9601086
He, S., & Li, P. (2020). A MATLAB based graphical user interface (GUI) for quickly producing widely used hydrogeochemical diagrams. Chemie Der Erde, 80(4). https://doi.org/10.1016/j.chemer.2019.125550
Hertel, M., Ott, S., Neumann, O., Schäfer, B., Mikut, R., & Hagenmeyer, V. (2022). Transformer Neural Networks for Building Load Forecasting. (December), 0–7. Retrieved from https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
Lekshmi, M., & Subramanya, K. N. A. (2019). Short-Term Load Forecasting of 400kV Grid Substation Using R-Tool and Study of Influence of Ambient Temperature on the Forecasted Load. 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), 1–5. https://doi.org/10.1109/ICACCP.2019.8883005
McNeil, M. A., Karali, N., & Letschert, V. (2019). Forecasting Indonesia’s electricity load through 2030 and peak demand reductions from appliance and lighting efficiency. Energy for Sustainable Development, 49, 65–77. https://doi.org/10.1016/j.esd.2019.01.001
Meng, Z. (2022). Bagging Based Multi-Source Learning and Transfer Regression for Electricity Load Forecasting. 49(2).
Nnachi, G. U., Akumu, A. O., Richards, C. G., & Nicolae, D. V. (2018). Estimation of no-Load Losses in Distribution Transformer Design Finite Element Analysis Techniques in Transformer Design. 2018 IEEE PES/IAS PowerAfrica, PowerAfrica 2018, 527(1), 527–531. https://doi.org/10.1109/PowerAfrica.2018.8521142
Otong, M. (2019). Rekonfigurasi Jaringan Distribusi Menggunakan Algoritma Genetika di Interkoneksi Penyulang Pakupatan dan Palima pada Beban Prioritas untuk Mengurangi Rugi Daya dan Jatuh Tegangan. https://doi.org/10.36055/setrum.v8i2.6796
Oulasvirta, A., Dayama, N. R., Shiripour, M., John, M., & Karrenbauer, A. (2020). Combinatorial Optimization of Graphical User Interface Designs. Proceedings of the IEEE, 108(3), 434–464. https://doi.org/10.1109/JPROC.2020.2969687
Prakash, K., Islam, F. R., Mamun, K. A., & Pota, H. R. (2020). Configurations of Aromatic Networks for Power Distribution System. Sustainability, 12(10), 4317. https://doi.org/10.3390/su12104317
Sbravati, A., Oka, M. H., Maso, J. A., & Valmus, J. (2018). Enhancing Transformers Loadability for Optimizing Assets Utilization and Efficiency. 2018 IEEE Electrical Insulation Conference (EIC), (June), 144–149. https://doi.org/10.1109/EIC.2018.8481063
Senen, A., Widyastuti, C., Handayani, O., & Putera, P. (2021). Development of micro-spatial electricity load forecasting methodology using multivariate analysis for dynamic area in tangerang, indonesia. Pertanika Journal of Science and Technology, 29(4), 2565–2578. https://doi.org/10.47836/PJST.29.4.18
Zhang, J., Liu, K., Liu, G., Xu, B., & Kang, Y. (2018). Research on the Influence of Primary Load Imbalance on the Combined Transformer’s Error. 2018 International Conference on Power System Technology (POWERCON), (201804270000511), 1504–1511. https://doi.org/10.1109/POWERCON.2018.8602069
Zhang, S., Wang, Y., Zhang, Y., Wang, D., & Zhang, N. (2020). Load probability density forecasting by transforming and combining quantile forecasts. Applied Energy, 277, 115600. https://doi.org/10.1016/j.apenergy.2020.115600
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Adri Senen, Oktaria, Christine Widyastuti
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Penulis yang menyerahkan artikel di Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik untuk keperluan publikasi telah mengetahui bahwa Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik memberikan akses terbuka terhadap konten untuk mendukung pertukaran informasi mengenai ilmu pengetahuan, sesuai dengan penerbitan daring yang berbasis Open Access Journal dan mengikuti Creative Commons Attribution 4.0 International License. Sehingga penulis setuju dengan ketentuan-ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak publikasi pertama kepada pihak jurnal dengan pekerjaan secara bersamaan
di bawah Creative Commons Attribution 4.0 International License yang memungkinkan orang lain untuk berbagi pekerjaan
dengan pengakuan kepengarangan karya dan publikasi pertama artikel tersebut di Jurnal Teknik: Media Pengembangan dan
Aplikasi Teknik.
2. Penulis dapat melakukan perjanjian tambahan untuk hak distribusi non-eksklusif artikel yang telah diterbitkan di jurnal ini
(misalnya, posting ke sebuah repositori institusi atau menerbitkannya dalam sebuah buku), dengan mengakui bahwa
publikasi pertama dilakukan di Jurnal Teknik: Media Pengembangan dan Aplikasi Teknik.
3. Penulis diizinkan dan didorong untuk menyebarkan karya mereka secara daring (misalnya, dalam repositori institusi atau
laman web penulis) setelah artikel terbit (proses penerbitan artikel selesai). Hal ini terkait dengan imbas dari pertukaran
informasi yang produktif (Lihat Pengaruh Open Access).