Studi Pengaruh Konsentrasi Katalis ZnO untuk Degradasi Limbah Palm Oil Mill Effluent (POME) Menggunakan Teknologi Fotokatalitik

Authors

  • Farizky Wahyudi Institut Teknologi Badung
  • Wibawa Hendra Saputera Institut Teknologi Bandung
  • Dwiwahju Sasongko Institut Teknologi Bandung
  • Hary Devianto Institut Teknologi Bandung

DOI:

https://doi.org/10.55893/jt.vol22no2.549

Keywords:

POME, photocatalytic, COD, radical, ZnO

Abstract

Indonesia is among the world’s largest palm oil market countries leading to significant growth in the domestic palm oil industry. However, the increase in palm oil trading has also led to a rise in the production of waste known as Palm Oil Mill Effluent (POME). Currently, the majority of factories use open ponds for POME processing, but this method is considered ineffective for treating POME. To address this issue, researchers are exploring photocatalytic technology, which utilizes light energy (UV, visible, sunlight) to produce radical compounds that act as oxidizing agents for POME degradation. In this study, ZnO was employed as a catalyst. The XRD and UV-vis DRS characterizations confirmed that ZnO had a hexagonal wurtzite crystal structure with a band gap energy of 3,22 eV. The photocatalytic activity test results revealed that using 0.5 g/L ZnO catalyst proved to be efficient in degrading organic content in POME. The percentage of chemical oxygen demand (COD) degradation reached 22.85%, color degradation reached 48.53% and the reaction rate kinetics constant of COD degradation was at 2.6´10-3 min-1.

Author Biographies

  • Farizky Wahyudi, Institut Teknologi Badung

    Chemical Engineering

  • Wibawa Hendra Saputera, Institut Teknologi Bandung

    Chemical Engineering

  • Dwiwahju Sasongko, Institut Teknologi Bandung

    Chemical Engineering

  • Hary Devianto, Institut Teknologi Bandung

    Chemical Engineering

References

Abdullah, H., Khan, M. M. R., Ong, H. R., & Yaakob, Z. (2017). Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview. Journal of CO2 Utilization, 22(March), 15–32. https://doi.org/10.1016/j.jcou.2017.08.004

Ameta, R., Solanki, M. S., Benjamin, S., & Ameta, S. C. (2018). Photocatalysis. Dalam Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology (hlm. 135–175). https://doi.org/10.1016/B978-0-12-810499-6.00006-1

Badrun, Y., Retnawati, S. F., Fauzi, M. R., Harahap, I., & Anggraini, D. A. (2019). Analisis pencemaran sungai Rokan akibat kegiatan pabrik kelapa sawit. 2018, 24–36.

Charles, A., & Cheng, C. K. (2019). Photocatalytic treatment of palm oil mill effluent by visible light-active calcium ferrite: Effects of catalyst preparation technique. Journal of Environmental Management, 234, 404–411. https://doi.org/10.1016/j.jenvman.2019.01.024

Charles, A., Khan, M. R., Ng, K. H., Wu, T. Y., Lim, J. W., Wongsakulphasatch, S., Witoon, T., & Cheng, C. K. (2019). Facile synthesis of CaFe2O4 for visible light driven treatment of polluting palm oil mill effluent: Photokinetic and scavenging study. Science of the Total Environment, 661, 522–530. https://doi.org/10.1016/j.scitotenv.2019.01.195

Cheng, C. K., Deraman, M. R., Ng, K. H., & Khan, M. R. (2016). Preparation of titania doped argentum photocatalyst and its photoactivity towards palm oil mill effluent degradation. Journal of Cleaner Production, 112, 1128–1135. https://doi.org/10.1016/j.jclepro.2015.06.104

Cheng, C. K., Rizauddin Derahman, M., & Khan, M. R. (2015). Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania. Journal of Environmental Chemical Engineering, 3(1), 261–270. https://doi.org/10.1016/j.jece.2014.10.016

Cheng, Y. W., Chang, Y. S., Ng, K. H., Wu, T. Y., & Cheng, C. K. (2017). Photocatalytic restoration of liquid effluent from oil palm agroindustry in Malaysia using tungsten oxides catalyst. Journal of Cleaner Production, 162, 205–219. https://doi.org/10.1016/j.jclepro.2017.06.023

Hodzic, A., Madronich, S., Kasibhatla, P. S., Tyndall, G., Aumont, B., Jimenez, J. L., Lee-Taylor, J., & Orlando, J. (2015). Organic photolysis reactions in tropospheric aerosols Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime Organic photolysis reactions in tropospheric aerosols Organic photolysis reactions in tropospheric aerosols. Atmos. Chem. Phys. Discuss, 15, 8113–8149. https://doi.org/10.5194/acpd-15-8113-2015

Karthikeyan, C., Arunachalam, P., Ramachandran, K., Al-Mayouf, A. M., & Karuppuchamy, S. (2020). Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Dalam Journal of Alloys and Compounds (Vol. 828). Elsevier Ltd. https://doi.org/10.1016/j.jallcom.2020.154281

Lam, S. M., Wong, K. A., & Sin, J. C. (2018). Fabrication of Flower-like ZnO Micro/Nanostructures for Photodegradation of Pre-treated Palm Oil Mill Effluent. IOP Conference Series: Earth and Environmental Science, 112(1). https://doi.org/10.1088/1755-1315/112/1/012003

León, D. E., Zúñiga-Benítez, H., Peñuela, G. A., & Mansilla, H. D. (2017). Photocatalytic Removal of the Antibiotic Cefotaxime on TiO2 and ZnO Suspensions Under Simulated Sunlight Radiation. Water, Air, and Soil Pollution, 228(9). https://doi.org/10.1007/s11270-017-3557-4

Morales-Flores, N., Pal, U., & Sánchez Mora, E. (2011). Photocatalytic behavior of ZnO and Pt-incorporated ZnO nanoparticles in phenol degradation. Applied Catalysis A: General, 394(1–2), 269–275. https://doi.org/10.1016/j.apcata.2011.01.011

Ng, K. H., & Cheng, C. K. (2015). A novel photomineralization of POME over UV-responsive TiO2 photocatalyst: kinetics of POME degradation and gaseous product formations. RSC Advances, 5(65), 53100–53110. https://doi.org/10.1039/c5ra06922j

Ng, K. H., & Cheng, C. K. (2016). Photo-polishing of POME into CH4-lean biogas over the UV-responsive ZnO photocatalyst. Chemical Engineering Journal, 300, 127–138. https://doi.org/10.1016/j.cej.2016.04.105

Ng, K. H., Deraman, M. R., Ang, C. H., Chong, S. K., Kong, Z. Y., Khan, M. R., & Cheng, C. K. (2014). Phototreatment of palm oil mill effluent (POME) over Cu/TiO2 photocatalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 9(2), 121–127. https://doi.org/10.9767/bcrec.9.2.6011.121-127

Ng, K. H., Khan, M. R., Ng, Y. H., Hossain, S. S., & Cheng, C. K. (2017). Restoration of liquid effluent from oil palm agroindustry in Malaysia using UV/TiO2 and UV/ZnO photocatalytic systems: A comparative study. Journal of Environmental Management, 196, 674–680. https://doi.org/10.1016/j.jenvman.2017.03.078

Rajani, A., Kusnadi, Santosa, A., Saepudin, A., Gobikrishnan, S., & Andriani, D. (2019). Review on biogas from palm oil mill effluent (POME): Challenges and opportunities in Indonesia. IOP Conference Series: Earth and Environmental Science, 293(1). https://doi.org/10.1088/1755-1315/293/1/012004

Saputera, W. H., Amri, A. F., Daiyan, R., & Sasongko, D. (2021). Photocatalytic technology for palm oil mill effluent (POME) wastewater treatment: Current progress and future perspective. Materials (Vol. 14, Nomor 11). MDPI AG. https://doi.org/10.3390/ma14112846

Saputera, W. H., Amri, A. F., Mukti, R. R., Suendo, V., Devianto, H., & Sasongko, D. (2021). Photocatalytic degradation of palm oil mill effluent (Pome) waste using BiVO4 based catalysts. Molecules, 26(20). https://doi.org/10.3390/molecules26206225

Turkyilmaz, S. S., Guy, N., & Ozacar, M. (2017). Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. Journal of Photochemistry and Photobiology A: Chemistry, 341, 39–50. https://doi.org/10.1016/j.jphotochem.2017.03.027

Additional Files

Published

2023-11-17

How to Cite

Studi Pengaruh Konsentrasi Katalis ZnO untuk Degradasi Limbah Palm Oil Mill Effluent (POME) Menggunakan Teknologi Fotokatalitik. (2023). Jurnal Teknik: Media Pengembangan Ilmu Dan Aplikasi Teknik, 22(2), 105-113. https://doi.org/10.55893/jt.vol22no2.549